ISBN: 978-80-244-5535-8 | DOI: 10.5507/prf.19.24455358

Differential Geometry of Special Mappings

Josef Mikeš et al.


Kolektivní monografie je věnována geodetickým zobrazením (tj. diffeomorfismům zachovávajícím geodetiky) Riemannových variet a jejich zobecněním. Kniha pokrývá také související geometrická témata a tvoří ji 18 kapitol. První a druhá je úvodem do diferenciální geometrie (křivek a ploch) a topologie. Další čtyři kapitoly se věnují základům speciálních variet s afinní konexí a jejich zobrazení. Kapitoly 7-12 jsou rozsáhlou analýzou geodetických zobrazení (mj. Einsteinových a Kählerových prostorů). Kapitoly 13-16 se věnují rotačním, F-planárním, holomorfně-projektivním a skoro geodetickým zobrazením. Kapitola 17 je věnována geometrii Riemannových-Finslerových prostorů. Kapitola 18 se zabývá A-prostory a Klingenbergovými projektivními prostory. Knihu mohou využít specialisté – matematici nebo fyzici a PhD. studenti.

2. vydání, Publikováno: 2019, vydavatel: Univerzita Palackého v Olomouci, Křížkovského 8, 771 47 Olomouc



Reference

  1. Afwat M., Švec A. Global differential geometry of hypersurfaces. Rozpr. ČSAV 88:7, 1978, 75p.
  2. Agricola I., Friedrich T. Global analysis. Differential forms in analysis, geometry and physics. Graduate Studies in Mathematics, 52. AMS, Providence, 2002, 343p. Přejít k původnímu zdroji...
  3. Agricola I., Friedrich T. Elementargeometrie. Fachwissen für Studium und Mathematikunterricht. Springer Spektrum, Wiesbaden, 2015. Přejít k původnímu zdroji...
  4. Aleksandrov A.D., Netsvetaev N.Yu. Geometry. Nauka, Moscow, 1990.
  5. Amari S.-I. Differential-geometrical methods in statistics. Lecture Notes in Statistics, 28. Springer, 1985. Přejít k původnímu zdroji...
  6. Amari S.-I., Barndorff-Nielsen O.E., Kass R.E., Lauritzen S.L., Rao C.R. Differential geometry in statistical inference. IMS, Hayward, California, 1987. Přejít k původnímu zdroji...
  7. Amari S.-I., Nagaoka H. Methods of information geometry. AMS, Providence, 2000.
  8. Ambartzumian R.V. Combinatorial integral geometry. With applications to mathematical stereology. J. Wiley & Sons, Chichester, 1982.
  9. Aminova A.V. Groups of transformations of Riemannian manifolds. J. Sov. Math. 55:5, 1996-2041, 1991. ⊲ Itogi Nauki Tekh., Ser. Probl. Geom. 22, 97-165, 1990. Přejít k původnímu zdroji...
  10. Aminova A.V. Pseudo-Riemannian manifolds with common geodesics. Russ. Math. Surv. 48:2, 105-160, 1993. ⊲ Usp. Mat. Nauk 48:2, 107-164, 1993. Přejít k původnímu zdroji...
  11. Aminova A.V. Projective transformations of pseudo-Riemannian manifolds. Janus-K, Moscow, 2002.
  12. Aminova A.V. Projective transformations of pseudo-Riemannian manifolds. J. Math. Sci. (New York) 113:3, 367-470, 2003. Přejít k původnímu zdroji...
  13. Aminova A.V., Aminov N.A.-M. Cartan projective connection spaces and grouptheoretic analysis of systems of second-order ordinary differential equations. J. Math. Sci. (New York) 169:3, 282-296, 2010. Přejít k původnímu zdroji...
  14. Anderson F.W., Fuller F.K. Rings and categories of modules. Springer, New York, 1973. Přejít k původnímu zdroji...
  15. Antonelli P.L., Ingarden R.S., Matsumoto M. The theory of sprays and Finsler spaces with applications in physics and biology. FTP 58, Kluwer, 1993. Přejít k původnímu zdroji...
  16. Armstrong M.A. Basic topology. Springer, 1983. Přejít k původnímu zdroji...
  17. Arnold V.I. Geometrical methods in the theory of ordinary differential equations. Springer, 1983. Přejít k původnímu zdroji...
  18. Artin E. Geometric algebra. Nauka, Moscow, 1969.
  19. Atiah M.F., MacDonald I.G. Introduction to commutative algebra. Mir, Moscow, 1972.
  20. Bacon P.Y. An introduction to Klingenberg planes. Gainesville, USA, Vol. I. 1976; Vol. II. 1979; Vol. III. 1979.
  21. Baer R. Linear algebra and projective geometry. Izd. IL, Moscow, 1955.
  22. Baird P., Wood J.C. Harmonic morphisms between Riemannian manifolds. Oxford Univ. Press, 2003. Přejít k původnímu zdroji...
  23. Bao D., Chern S.-S., Shen Z. An introduction to Riemann-Finsler geometry. Springer, 2000. Přejít k původnímu zdroji...
  24. Bazylev V.T. Geometry of differentiable manifolds. Vyssh. Shkola, Moscow, 1989.
  25. Beklemišev D.V. Differential geometry of spaces with almost complex structure. Moscow, VINITI, 1965, Geometry, 165-212, 1963.
  26. Berezovskii V.E., Mikeš J. Almost geodesic mappings of spaces with affine connection. J. Math. Sci. (New York) 207:3, 389-409, 2015. Přejít k původnímu zdroji...
  27. Berger M. A Panoramic View of Riemannian Geometry. Springer, 2003. Přejít k původnímu zdroji...
  28. Besse A.L. Manifolds all of whose geodesics are closed. Springer, 1978. Přejít k původnímu zdroji...
  29. Besse A.L. Einstein manifolds. Springer, 1987. Přejít k původnímu zdroji...
  30. Bishop R.L., Crittenden R.J. Geometry of manifolds. Acad. Press, N.Y. etc., 1964.
  31. Bishop R.L., Goldberg S.I. Tensor analysis on manifolds. Dover. Publ, N.Y., 1980.
  32. Blaschke W., Leichtweiss K. Elementare Differentialgeometrie. Springer, 1973. Přejít k původnímu zdroji...
  33. Boeckx E., Kowalski O., Vanhecke L. Riemannian manifolds of conullity two. World Sci. 1996. Přejít k původnímu zdroji...
  34. Boltyanskij V.G., Efremovich V.A. Descriptive topology. Nauka, Moscow, 1982.
  35. Bondi H. et al. Rival theories of cosmology. A symposium and discussion of modern theories of the structures of the universe. Oxford University Press, 1960.
  36. Bonnet O. Manuscript. J. École Polytechnique, 25, 1-151, 1867.
  37. Bourbaki N. Algebra. Nauka, Moscow, 1966.
  38. Busemann H., Kelly P.J. Projective geometry and projective metrics. Acad. Press Inc. New York, 1953.
  39. do Carmo M.P. Differential geometry of curves and surfaces. Prentice-Hall, 1976.
  40. do Carmo M.P. Riemannian geometry. Birkhäuser, 1992. Přejít k původnímu zdroji...
  41. do Carmo M.P. Differentialgeometrie von Kurven und Flächen. Vieweg, 1998.
  42. Cartan É. La theorie des groupes finis et continus et la geometrie differentielle traitees par la methode du repere mobile. Moscow Univ. Press, 1963.
  43. Cartan H. Theorie elementaire des fonctions analytiques d'une ou plusieurs variabl. Hermann, 1975.
  44. Chandrasekhar S. The mathematical theory of black holes. Oxford Univ. Press, 1998. Přejít k původnímu zdroji...
  45. Chebotarev N.G. Grundzüge der Galoisschen theorie. Noordhoff N.V. XVI, 1950.
  46. Cheng X., Shen Z. Finsler geometry. An approach via Randers spaces. Springer, 2012. Přejít k původnímu zdroji...
  47. Chentsov N.N. Statistical decision rules and optimal inference. AMS, 1982.
  48. Čech E. Topologické prostory. (Czech) NČAV, Praha, 1959.
  49. Čech E. Bodové množiny. (Czech) NČAV, Praha, 1966.
  50. DerrickW.R., Grossman S.I. A first course in differential equations. Westl. Publ. 1987.
  51. Diblík J., Přibyl O. Ordinary differential equations. (Czech) CERM, Brno, 2004.
  52. Dimentberg F.M. Vintovoe isčislenie i ego priloženija v mechanike. Nauka, Moscow, 1965.
  53. Dold A. Lectures on algebraic topology. Springer, 1972. Přejít k původnímu zdroji...
  54. Doupovec M. Differencial geometry and tensor calculus. Publ. Techn. Univ. Brno, 1999.
  55. Dubrovin B.A., Fomenko A.T., Novikov S.P. Modern geometry - methods and applications. Part 2: The geometry and topology of manifolds. Springer, 1985. Přejít k původnímu zdroji...
  56. Dwight H.B. Tables of integrals and other mathematical data. Macmillan Comp. 1961.
  57. Egorov A.I., Sinyukov N.S., Sultanov A.Ya. The scientific heritage of I. P. Egorov (July 25, 1915 - October 2, 1990). J. Math. Sci. (New York) 74:3, 977-996, 1995. Přejít k původnímu zdroji...
  58. Egorov I.P. Motions in generalized differential-geometric spaces. Algebra, Topology, Geometry. VINITI, Moscow, 375-428, 1967.
  59. Egorov I.P. Motions in affine connected spaces. Kazan Univ. Press, 5-179, 1965.
  60. Egorov I.P. Automorphisms of generalized spaces. Itogi Nauki Tekh. VINITI, Ser. Probl. Geom. 10, 147-191, 1978.
  61. Egorov Yu.V., Shubin M.A. Foundations of the classical theory of partial differential equations. Springer, 1998. Přejít k původnímu zdroji...
  62. Einstein A. The meaning of relativity. Princeton Univ. Press, 1945. Přejít k původnímu zdroji...
  63. Eisenhart L.P. Riemannian geometry. Princeton Univ. Press, 1926. Přejít k původnímu zdroji...
  64. Eisenhart L.P. Non-Riemannian geometry. Princeton Univ. Press, 1926. AMS Colloq. Publ. 8, 2000. Přejít k původnímu zdroji...
  65. Eisenhart L.P. Continuous groups of transformations. Princeton Univ. Press, 1933.
  66. Engelking R. General topology. North Holland, 1967.
  67. Evtushik L.E. Structures of higher orders. Reminiscences of Professor Leonid Evgenyevich Evtushik from friends, colleagues and disciples. Intellekt-Tsentr, Moscow, 2014.
  68. Evtushik L.E., Lumiste Yu.G., Ostianu N.M., Shirokov A.P. Differential-geometric structures on manifolds. J. Sov. Math. 14, 1980, 1573-1719. Přejít k původnímu zdroji...
  69. Fecko M. Differential geometry and Lie groups for physicists. Cambridge Univ. 2006. Přejít k původnímu zdroji...
  70. Finikov S.P. A course on differential geometry. Gostechizdat, Moscow, 1952.
  71. Finikov S.P. Differential geometry. Moscow, 1955, 215p.
  72. Fomenko A.T., Mishchenko A.S. A short course in differential geometry and topology. Cambridge Sci. Publ., 2009, 273p.
  73. Frolov V.P., Zelnikov A. Introduction to black hole physics. Oxford Univ. Press, 2011. Přejít k původnímu zdroji...
  74. Fubini G. Sui gruppi transformazioni geodetiche. Mem. Acc. Torino, 2, 1903, 261-313.
  75. Fulton W. Algebraic topology, A first course. Springer, 1995. Přejít k původnímu zdroji...
  76. Gauss K.F. General investigations of curved surfaces. Raven Press, New York, 1965.
  77. Goldberg V.V., Lychagin V.V. Geodesic webs of hypersurfaces. Dokl. Math. 79:2, 284-286, 2009. Přejít k původnímu zdroji...
  78. Gray A. Modern differential geometry of curves and surfaces with Mathematica. 2nd ed. Boca Raton, FL: CRC Press, 1997.
  79. Griffiths H.B. Surfaces. Cambridge Univ. Press, 1976.
  80. Gromoll D., Klingenberg W., Meyer W. Riemannsche Geometrie im Grossen. Springer, 1975. Přejít k původnímu zdroji...
  81. Grünwald J. Über duale Zahlen und ihre Anwendung in der Geometrie. Monatsh. Math. 17, 81-136, 1906. Přejít k původnímu zdroji...
  82. Guseva N.I. et al. Geometry. Academia, Moscow, 2013.
  83. Hawking S.W., Ellis G.F.R. The large scale structure of space-time. Cambridge Univ. Press, 1973. Přejít k původnímu zdroji...
  84. Helgason S. Differential geometry, Lie groups, and symmetric spaces. AMS, 1978.
  85. Helgason S. Differential geometry and symmetric spaces. Acad. Press,NewYork, 1962.
  86. Hicks N.J. Notes of differential geometry. D. Van Nostrand Comp., Princeton, 1965.
  87. Hilton P.J., Wylie W. Homology theory. Cambridge Univ. Press, 1960. Přejít k původnímu zdroji...
  88. Hinterleitner I., Mikeš J. Fundamental equations of geodesic mappings and their generalizations. J. Math. Sci. (New York) 174:5, 537-554, 2011. Přejít k původnímu zdroji...
  89. Horský J., Novotný J., Štefaník M. Úvod do fyzikální kosmologie. Acad., Praha, 2004.
  90. Hurewicz W. Lectures on ordinary differential equations. MIT Press, Cambridge, 1958. Přejít k původnímu zdroji...
  91. Jänich K. Topology. Springer, 1984. Přejít k původnímu zdroji...
  92. Jukl M., Juklová L., Mikeš J. On problems of decompositions of tensors. J. Math. Sci. (New York) 174:5, 627-640, 2011. Přejít k původnímu zdroji...
  93. Jukl M., Juklová L., Mikeš J. Applications of local algebras of differentiable manifolds. J. Math. Sci. (New York) 207:5, 486-511, 2015. Přejít k původnímu zdroji...
  94. Jukl M., Juklová L., Mikeš J. Young tableaux and projections of tensors. J. Math. Sci. (New York), 2019. Přejít k původnímu zdroji...
  95. Kagan V.F. Foundations of the theory of surfaces. OGIZ Gostechiz, Moscow, Leningrad, Part 1, 1947; Part 2, 1948.
  96. Kagan V.F. Subprojective spaces. Bibl. Russkoi Nauki, Moscow, 1961.
  97. V.R. On Riemannian spaces Dm n. Tr. geom. semin.VINITI 5, 359-373, 1974.
  98. Kaigorodov V.R. A structure of space-time curvature. ltogi nauki i tekhn. VINITI, Probl. geometrii, 14, 177-204, 1983.
  99. Kamke E. Differentialgleichungen, Lösungsmethoden und Lösungen. Akad. Verlag, 1942.
  100. Kamke E. Differentialgleichungen reeller Funktionen. Akad. Verlag, Leipzig, 1956.
  101. Kass R.E., Vos P.W. Geometrical foundations of asymptotic inference. New York, 1997. Přejít k původnímu zdroji...
  102. Kelley J.L. General topology. D. Van Nostrand Comp., New York, etc. 1957.
  103. Keres H. Certain questions on general relativity. Research Theor. Phys. Tartu, 1957.
  104. Kinsey L.Ch. Topology of surfaces. Springer, 1993. Přejít k původnímu zdroji...
  105. Klingenberg W. A course in differential geometry. Springer, 1978. Přejít k původnímu zdroji...
  106. Kobayashi S. Transformation groups in differential geometry. Springer, 1972. Přejít k původnímu zdroji...
  107. Kobayashi S., Nomizu K. Foundations of differential geometry. Interscience Publ., New York etc. Vol. 1, 1963; Vol. 2, 1969.
  108. Kolář I., Pospíšilová L. Differential geometry of curves and surfaces. (Czech) Electr. publ. Masaryk Univ., Brno, 2007.
  109. Kolář I., Michor P.W., Slovák J. Natural operations in differential geometry. 1993. Přejít k původnímu zdroji...
  110. Kolmogorov A.N., Fomin S.V. Základy teorie funkcí a funkcionální analýzy. (Czech) SNTL Praha, 1975.
  111. Kovantsov N.I., Mikhajlovskij V.I., etc. Differential geometry, topology, tensor analysis, Collection of problems. Vyshcha Shkola, Kiev, 1989.
  112. von Kowalevsky S. Zur Theorie der partiellen Differentialgleichung. J. Reine Angew. Math. 80, 1-32, 1875. Přejít k původnímu zdroji...
  113. KowalskiO.Elemente derAnalysis aufMannigfaltigkeiten.Teubner-Texte, Leipzig,1981.
  114. Kreyszig E. Differential Geometry. Vol. I. Interscience Publ. New York, London, 1963.
  115. Kruchkovich G.I. Riemannian and pseudo-Riemannian spaces. Algebra. Topology. Geometry. Akad. Nauk SSSR, VINITI, Moscow, 191-220, 1966.
  116. Kruchkovich G.I. Lectures on group of motions. Erevan, 1977.
  117. Kudrjavcev L.D. Kurs matematicheskogo analiza. Vyssh. skola, Moscow, 1981.
  118. Kühnel W. Differential geometry; curves - surfaces - manifolds. AMS, 2006. Přejít k původnímu zdroji...
  119. Kureš M. Některé souvislosti variačního počtu a diferenciální geometrie z hlediska aplikací. (Czech) Brno, Vutium, 2003.
  120. Lagrange J.L. Sur la construction des cartes géographiques. Novéaux Mémoires de l'Académie des Sciences et Bell-Lettres de Berlin, 1779.
  121. Lagrange J.L. L&ecedil;cons sur le calcul des fonctions. Nouvelle édition, revue, corrigée et augmentée par l'Auteur. Paris, Courcier, 1806.
  122. Lambek J. Lectures on rings and modules. Blaisdell Publ. Comp., London, 1966.
  123. Landau L., Lifschitz E. Theory of fields. Moscow, 1965.
  124. Lee J.M. Riemannian Manifolds. An introduction to curvature. Springer, 1997. Přejít k původnímu zdroji...
  125. Leiko S.G., Mikeš J. Methodological guidelines on the course "Riemannian geometry". (Russian) Odessa Univ. Press, 1985.
  126. Levi-Civita T. Sulle transformationi dello equazioni dinamiche. Ann. Mat. Milano 24:2, 255-300, 1896.
  127. Lichnerowicz A. Global theory of connections and holonomy groups. Leyden, 1076.
  128. Lumiste Yu.G. Semisymmetric submanifolds. Itogi nauki i tekhn. VINITI, Probl. geometrii 23, 3-28, 1991.
  129. Machala F. Ordered Klingenberg planes. Palacky Univ. Press, Olomouc, 1990.
  130. Machala F. Fundamentalsätze der projektiven Geometrie mit Homomorphismus. Rozpr. ČSAV, Mat. 90:5, 1980.
  131. Marriot P., Salmon M. Applications of differential geometry in econometrics. Cambridge Univ. Press, 2000. Přejít k původnímu zdroji...
  132. Massey W.S. Algebraic Topology: An Introduction. Springer, l977.
  133. Matsumoto M. Foundations of Finsler geometry and special Finsler spaces. Shiga-Ken 520, Japan: Kaiseisha Press. VI, 1986.
  134. Matsumoto M. Finsler geometry in the 20th-century. Handbook of Finsler geometry. Vols. 1 and 2. Kluwer, 557-966, 2003.
  135. McCarty G. Topology, An introduction with application to topological groups. Mc Graw-Hill Company, New York, l967.
  136. McDonald B.R. Geometric algebra over local rings. Dekker, New York, 1976.
  137. McDonald B.R. Linear algebra over commutative rings. Dekker, New York, 1984.
  138. Metelka J. Diferenciální geometrie. (Czech) SNP, Praha, 1965; 1969.
  139. Mikeš J. Geodesic mappings of special Riemannian spaces. Topics in diff. geometry Vol. II (Debrecen, 1984), 793-813, Colloq. Math. Soc. J. Bolyai 46, North-Holland, Amsterdam, 1988.
  140. Mikeš J. Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. (New York) 78:3, 311-333, 1996. Přejít k původnímu zdroji...
  141. Mikeš J. Holomorphically projective mappings and their generalizations. J. Math. Sci. (New York) 89:3, 1334-1353, 1998. Přejít k původnímu zdroji...
  142. Mikeš J., Jukl M., Juklová L. Some results on traceless decomposition of tensors. J. Math. Sci. (New York) 174:5, 627-640, 2011. Přejít k původnímu zdroji...
  143. Mikeš J., Kiosak V.A., Vanžurová A. Geodesic mappings of manifolds with affine connection. Palacky Univ. Press, Olomouc, 2008.
  144. Mikeš J., Vanžurová A., Hinterleitner I. Geodesic mappings and some generalizations. Palacky Univ. Press, Olomouc, 2009.
  145. Mikeš J., Stepanova E., Vanžurová A. et al. Differential geometry of special mappings. Palacky Univ. Press, Olomouc, 2015, 566p.
  146. Millman R.S., Parker G.D. Elements of differential geometry. New Jersey, 1977.
  147. Milnor J.W., Stasheff J.D. Characteristic classes. Princeton Univ. Press, 1974. Přejít k původnímu zdroji...
  148. Mirzoyan V.A. Ric-semisymmetric submanifolds. J. Math. Sci. (New York) 70:2, 1624-1646, 1994. ⊲ Itogi Nauki Tekh., Ser. Probl. Geom. 23, 29-66, 1991. Přejít k původnímu zdroji...
  149. Mishchenko A.S., Fomenko A.T. A course in differential geometry and topology. Moscow Univ. Press, 1980.
  150. Mishchenko A.S., Fomenko A.T. A course in differential geometry and topology. Lan Press, Moscow, 2010.
  151. Misner C.W., Thorne K.S., Wheeler J.A. Gravitation. San Francisco, 1973.
  152. Mokhtarian F., Khalili N., Yuen P. Multi-scale free-form surface description. Web: http://www.ee.survey.ac.uk/Research/VSSP/demos/css3d/index.html.
  153. Moise E.E. Geometric topology in dimensions 2 and 3. Springer, l977.
  154. Munteanu G. Complex spaces in Finsler, Lagrange and Hamilton geometries. Kluwer Acad. Publ, 2004. Přejít k původnímu zdroji...
  155. Murray M.K., Rice J.W. Differential geometry and statistics. London, 1993. Přejít k původnímu zdroji...
  156. Nagy P.T., Strambach K. Loops in group theory and Lie theory. de Gruyter, 2002. Přejít k původnímu zdroji...
  157. Nakahara M. Geometry. Topology. London, 1990.
  158. O'Neil B. Semi-Riemannian geometry. Elsevier, 1983.
  159. Nomizu K., Sasaki T. Affine differential geometry. Cambridge Univ. Press, 1994.
  160. Norden A.P. Spaces of affine connection. Nauka, Moscow, 1976.
  161. Ossa E. Topologie. Vieweg-Studium, Braunschweig-Wiesbaden, 1992. Přejít k původnímu zdroji...
  162. Penrose R., Rindler W. Spinors and space-time. Vol. 1: Two-spinor calculus and relativistic fields, X, 458p., Vol. 2: Spinor and twistor methods in space-time geometry, IX, 501p., Cambridge Univ. Press. 1986. Přejít k původnímu zdroji...
  163. Petersen P. Riemannian geometry. Springer, 2006.
  164. Petrov A.Z. New methods in the general theory of relativity. Nauka, Moscow, 1966.
  165. Petrov A.Z. Einstein spaces. Pergamon Press, 1969. Přejít k původnímu zdroji...
  166. Petrovsky I.G. Lectures on partial differential equations. Dover Publ., New York, 1991.
  167. Pontryagin L.S. Selected scientific works. Nauka, Moscow, 1988.
  168. Popov A.G. Lobachevsky geometry and modern nonlinear problems. Birkhäuser/ Springer, 2014. ⊲ Moscow: LSU, 2012. Přejít k původnímu zdroji...
  169. Postnikov M.M. Lekcii po algebraičeskoj topologii, Osnovy teoriji gomotopij. (Russian) Nauka, Moscow, 1984.
  170. Postnikov M.M. Lekcii po algebraičeskoj topologii, Teorija gomotopij kletočnych prostranstv. (Russian) Nauka, Moscow, 1985.
  171. Poznyak E.G., Popov A.G. The sine-Gordon equation: geometry and physics. Znanie, Moscow, 1991.
  172. Poznyak E.G., Shikin E.V. Differential geometry. The first acquaintance. Moscow Univ. Press, 1990.
  173. Pressley A. Elementary Differential geometry. London, 2001. Přejít k původnímu zdroji...
  174. Radulovich Zh., Mikeš J., Gavril'chenko M.L. Geodesic mappings and deformations of Riemannian spaces. CID, Podgorica; OGU, Odessa, 1997.
  175. Rashevskij P.K. Geometric theory of equations with partial derivatives. Moscow, 1947.
  176. Rashevskij P.K. A course on differential geometry. Gostechizdat, Moscow, 1954.
  177. Rashevskij P.K. Riemannian geometry and tensor analysis. Nauka, Moscow, 1967.
  178. Reinhart B.L. Differential geometry of foliations. Springer, 1983. Přejít k původnímu zdroji...
  179. Riemann B. Collected papers. Transl. from the 1892 German edition by Roger Baker, Charles Christenson and Henry Orde. Kendrick Press, Heber City, UT, 2004.
  180. Rinow W., Thorpe J.A. Lehrbuch der topologie. Berlin, 1975.
  181. Rund H. The differential geometry of Finsler spaces. Springer, 1959. Přejít k původnímu zdroji...
  182. Ruse H.S., Walker A.G., Willmore T.I. On the harmonic spaces. Cremonese, 1961.
  183. Sachs R.K., Wu H. General relativity for mathematicians. Springer, 1977. Přejít k původnímu zdroji...
  184. Salzmann H., Betten D., Grundhöfer T., Hähl H., Löwen R., Stroppel M. Compact projective planes. de Gruyter, 1995. Přejít k původnímu zdroji...
  185. Schaefer H.H., Wolff M.P. Topological vector spaces. Springer, 1999. Přejít k původnímu zdroji...
  186. Shen Z. Differential geometry of spray and Finsler spaces. Kluwer, 2001. Přejít k původnímu zdroji...
  187. Schouten J.A. Ricci-calculus. Berlin, 1954. Přejít k původnímu zdroji...
  188. Schouten J.A., Struik D.J. Introduction into new methods in differential geometry. (Germ.) 1935.
  189. Shirokov A.P. Structures on differentiable manifolds. Progress Math. 9, 137-207, 1971. Přejít k původnímu zdroji...
  190. Shirokov A.P. P.A. Shirokov's work on the geometry of symmetric spaces. J. Math. Sci. (New York) 89:3, 1253-1260, 1998. Přejít k původnímu zdroji...
  191. Shirokov A.P. Spaces over algebras and their applications. J. Math. Sci. (New York) 108:2, 232-248, 2002. Přejít k původnímu zdroji...
  192. Shirokov P.A. Selected investigations on geometry. Kazan Univ. press, 1966.
  193. Shoham M., Brodsky V. Dual numbers representation of rigid body dynamics. Technion - Israel Inst. Technology, Haifa, 1996.
  194. Simon U., Schwenk-Schellschmidt A., Viesel H. Introduction to the affine differential geometry of hypersurfaces. Science Univ. Tokyo, 1991.
  195. Singer I.M., Thorpe J.A. Lecture Notes on elementary topology and geometry. 1967.
  196. Sinyukov N.S. Geodesic mappings of Riemannian spaces. Nauka, Moscow, 1979.
  197. Sinyukov N.S. Almost-geodesic mappings of affinely connected and Riemann spaces. J. Sov.Math. 25, 1235-1249, 1984. ⊲ Itogi Nauki Tekh., Ser.Probl.Geom. 13, 3-26, 1982. Přejít k původnímu zdroji...
  198. Sinyukov N.S. The development of current differential geometry in Odessa State University in recent years. Sov.Math. 30:1, 92-99, 1986. ⊲ Izv. VUZ,Mat. 1, 69-74, 1986.
  199. Sinyukov N.S., Kurbatova I.N., Mikeš J. Holomorphically projective mappings of Kähler spaces. Odessa Univ. Press, 1985.
  200. Sinyukov N.S., Matveenko T.I. Topology. Textbook. Vishcha Shkola, Kiev, 1984.
  201. Sokolnikoff I.S. Tensor analysis, theory and applications. New York, 1951.
  202. Solodovnikov A.S. Projective transformation of Riemannian spaces. Usp. Mat. Nauk 11:4(70), 45-116, 1956.
  203. Solodovnikov A.S. Spaces with common geodesics. Tr. Semin. Vektor. Tenzor. Anal. 11, 43-102, 1961.
  204. Solodovnikov A.S. Geometric description of all possible representations of a Riemannian metric in Levi-Civita form. Trudy Sem. Vektor. Tenzor. Anal. 12, 131-173, 1963.
  205. Solodovnikov A.S. Int. Sci. Conf. Finance Univ. Moscow, 2011.
  206. Spanier E.H. Basic topology. McGraw-Hill Book Comp., New York etc. 1966.
  207. Stepanov S.E., Shandra I.G., Mikeš J. Harmonic and projective diffeomorphisms. J. Math. Sci. (New York) 207:4, 658-688, 2015. Přejít k původnímu zdroji...
  208. Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E. Exact solutions of Einsteins field equations. Cambridge Univ. Press, 2003. Přejít k původnímu zdroji...
  209. Stevenson F.W. Projective planes. Freeman and Comp., San Francisco, 1972.
  210. Study E. Geommetry der Dynamen. Leipzig, 1901.
  211. Szabó Z. Structure theorems on Riemannian spaces satisfying R(X, Y) . R = 0. I. The local versions. J. Diff. Geom. 17, 531-582, 1982. II. Global versions. Geom. Dedicata. 19, 65-108, 1985. Přejít k původnímu zdroji...
  212. Tachibana S.-I., Ishihara S. On infinitesimal holomorphically projective transformations in Kählerian manifolds. Tohoku Math. J., II. Ser. 12, 77-101, 1960. Přejít k původnímu zdroji...
  213. Taylor A.E. Introduciton to functional analysis. J.Wiley & Sons, New York, 1958.
  214. ThomasT.Y. The differential invariants of generalized spaces. Cambr.Univ. Press, 1934.
  215. Thorpe J.A. Elementary Topics in Differential Geometry. Springer, 1994.
  216. Tricomi T. Lezioni sulle equazioni a derive parziali. Ed. Gheroni, Torino, 1954.
  217. Vekua I.N. Generalized analytic functions. Fizmatgiz, Moscow, 1959.
  218. Vishnevskij V.V. Integrable affinor structures and their plural interpretations. J. Math. Sci. (New York) 108:2, 151-187, 2002. Přejít k původnímu zdroji...
  219. Vishnevskij V.V., Shirokov A.P., Shurygin V.V. Spaces over algebras. Kazan Univ. Pres, 1985.
  220. Vŗanceanu G. L&ecedil;cons de géométrie differentielle. Vol. I, II. Bucharest, 1957.
  221. Weyl H. Raum, Zeit, Materie. Berlin, 1919. Přejít k původnímu zdroji...
  222. Weyl H. The classical groups. Princeton Univ. Press, 1946. Přejít k původnímu zdroji...
  223. Whitehead G.W. Elements of homotopy theory. Springer, 1978. Přejít k původnímu zdroji...
  224. Wolf J.A. Spaces of constant curvature. Berkley, 1972.
  225. Yanenko N.N. Some questions of the theory of imbedding of Riemannian metrics in Euclidean spaces. Usp. Mat. Nauk 8:1(53), 21-100, 1953.
  226. Yano K. The theory of Lie derivatives and its applications. Nord-Holland,1957.
  227. Yano K. Differential geometry of complex and almost comlex spaces. Perg. Press, 1965.
  228. Yano K. Integral Formulas in Riemannian Geometry. Marcel Dekker,New York, 1970.
  229. Yano K., Bochner S. Curvature and Betti numbers. Princeton Univ. Press, 1953. Přejít k původnímu zdroji...
  230. Gauss Carl Fridrich. Demonstratio nova theorematis omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse. Ph.D. Thesis, Univ. Helmstedt 1799. (supervizor J.F. Pfaff)
  231. Bolyai János. Non-Euclidean Geometry. Thesis, Royal Engineering College from Vienna 1822. (supervizor F. Bolyai)
  232. Lobachevsky Nikolai Ivanovich. Geometry. Thesis, Kazan State Univ. 1814. (supervizor J.M.Ch. Bartels)
  233. Riemann Bernhard. Grundlagen für eine allgemeine Theorie der Funktionen einer veranderlichen complexen Grösse. Ph.D. Thesis, Göttingen Univ. 1851. (supervizor C.F. Gauss)
  234. Finsler Paul. Über Kurven und Flächen in allgemeinen Raimen. Ph.D. Thesis, Göttingen Univ. 1918. (supervizor C. Carathéodory)
  235. Aminova A.V. Invariantly-groups methods in theory of projective mappings space like times manifolds. Dr.Sc. Thesis, Moscow, 1993.
  236. Bácsó S. Geodesic mappings of Finsler spaces and its generalizations. Ph.D. Thesis, Odessa Univ. 100p. 1985. (supervizor N.S. Sinyukov)
  237. Berezovski V.E. On almost geodesic mappings of spaces with affine connections. Ph.D. Thesis, Moscow Ped. Univ. 1991. (supervisor J. Mikeš)
  238. Bezkorovainaya L.L. On infinitesimal areal deformations of surfaces and their connection with the theory of shells. Ph.D. Thesis, Odessa Univ. 1971. (supervizor N.S. Sinyukov)
  239. Brinkmann H.W. Contribution to the theory of Riemannian spaces. Ph.D. Thesis, Harvard Univ. ProQuest LLC, Ann Arbor, MI, 1925. (supervizor G.D. Birkhoff)
  240. Chepurna E. Diffeomorphisms of Riemannian manifolds with preserved Einstein tensor. Ph.D. Thesis, Palacky Univ. Olomouc, 2012. (supervisor J. Mikeš)
  241. Cherevko E. Geometry of special diffeomorphisms of conformal Kähler manifolds. Ph.D. Thesis, Odessa Nat. Econom. Univ., 2019. (supervisor V. Berezovskii)
  242. Chodorová M. Holomorphically projective mappings onto Kähler spaces and its generalizations. Ph.D. Thesis, Palacky Univ. Olomouc, 2008. (supervisor J. Mikeš)
  243. Chudá H. Some properties of geodesics mappings and their generalization. Ph.D. Thesis, Palacky Univ. Olomouc, 2010. (supervisor J. Mikeš)
  244. Dermanets N.V. Higher order A-deformations of surfaces. Ph.D. Thesis, Odessa Univ. 1986. (supervizor L.L. Bezkorovainaya)
  245. Esenov K.R. On generalized geodesic and geodesic mappings of special Riemannian spaces. Ph.D. Thesis, Bishkek, 1993. (supervisors J. Mikeš and A. Borubayev).
  246. Gavrilchenko M.L. Special infinitesimal deformations of surfaces. Ph.D. Thesis, Odessa Univ. 1967. (supervisor N.S. Sinyukov)
  247. Haddad M. Holomorphically projective mappings of Kählerian spaces. Ph.D. Thesis, Moscow State Univ. 1995. (supervisors L.E. Evtushik and J. Mikeš)
  248. Hinterleitner I. Special mappings of equidistant spaces. Vědecké spisy VUT Brno. Edice Ph.D. Thesis, 525, 20p. 2009. (supervisor M. Doupovec)
  249. Hrdina J. Generalized planar curves and quaternionic geometries. Ph.D. Thesis, Masaryk Univ. Brno, 2007. (supervisor J. Slovák)
  250. al Hussin S. Special rotary-conformal mappings of Riemannian spaces. Ph.D. Thesis, Odessa Univ. 1991. (supervisor S.G. Leiko)
  251. Kaigorodov V.R. Motion in Einstein spaces. Ph.D. Thesis, Kazan, 1963. (supervisor A.Z. Petrov)
  252. Kiosak V.A. Geodesic mappings of Riemannian spaces. Ph.D. Thesis, Moscow Ped. Inst., 1994. (supervisor J. Mikeš)
  253. Kiosak V.A. Geodesic mappings of Riemannian spaces. Ph.D. Thesis, Palacky Univ. Olomouc, 2002. (supervisor J. Mikeš)
  254. Kovalev P.I. Lie triple systems and spaces with affine connection. Ph.D. Thesis, Odessa Univ. 1973. (supervisor N.S. Sinyukov)
  255. Kurbatova I.N. Quasi-geodesic mappings of Riemannian spaces. Ph.D. Thesis, Odessa Univ. 1980. (supervisor N.S. Sinyukov)
  256. al Lamy R.J.K. 2F-planar mappings of affine-connection and Riemannian spaces. Ph.D. Thesis, Odessa Univ. 1992. (supervisor I.N. Kurbatova)
  257. Leiko S.G. Three-geodesic mappings of spaces with affine connections. Ph.D. Thesis, Odessa Univ. 1976. (supervisor N.S. Sinyukov)
  258. Mikeš J. Geodesic and holomorphically projective mappings of special Riemannian space. Ph.D. Thesis, Odessa Univ. 1979. (supervisor N.S. Sinyukov)
  259. Mikeš J. Geodesic, F-planar and holomorphically projective mappings of Riemannian spaces and spaces with affine connections. DrSc. Thesis, Palacky Univ. Olomouc, 1995.
  260. Moldobayev Dz. Special transformations of Riemannian spaces, which preserved Einstein tensor. Ph.D. Thesis, Bishkek Univ. 1986. (supervisors N.S. Sinyukov and B. Abakirov)
  261. Oboznaya E.D. Some classes of infinitesimal deformations of specially equipped affine space hypersurfaces. Ph.D. Thesis, Odessa Univ. 1985. (supervisor N.S. Sinyukov)
  262. Papp I. Geodesic mappings of metrical spaces. Ph.D. Thesis, Debrecen, 2006. (supervisor S. Bácsó)
  263. Peška P. F-planar mappings of special manifolds. Ph.D. Thesis, Palacky Univ. Olomouc, 2017. (supervisors J. Mikeš, V.T. Berezovsky, H. Chudá)
  264. Pirklová P. Metrizovatelnost afinní conexe. (Czech) Ph.D. Thesis, Palacky Univ. Olomouc, 2004. (supervisor A. Vanžurová)
  265. Pokas S.M. Isometric and conformal transformations in the associated Riemannian spaces of second order. Ph.D. Thesis, Odessa Univ. 1984. (supervisor N.S. Sinyukov)
  266. Rachůnek L. Torse-forming vector fields in T-semisymmetric Riemannian spaces. Ph.D. Thesis, Palacky Univ. Olomouc, 2004. (supervisor J. Mikeš)
  267. Sabykanov A.R. Projective Euclidian and holomorphically projective flat recurrent spaces with affine connections. Ph.D. Thesis, Bishkek, Kyrgystan, 1995. (supervisors J. Mikeš and D. Moldobayev)
  268. Shandra I.G.. Geodesic mappings of singular Riemannian spaces. Ph.D. Thesis, Odessa Univ. 1988. (supervisor N.S. Sinyukov)
  269. Shiha M. Geodesic and holomorphically projective mappings of parabolically Kählerian spaces. Ph.D. Thesis, Moscow Ped. Inst. 1992. (supervisor J. Mikeš)
  270. Sinyukov N.S. On geodesic mappings of Riemannian spaces. Ph.D. Thesis, Moscow, 1955. (supevizor N.N. Yanenko)
  271. Sinyukov N.S. Theory of geodesic mappings of Riemannian spaces and their generalization. DrSc. Thesis, Kyjev, 1971.
  272. Sinyukova E.N. Hopf-Bochner-Yano method in the theory of geodesic and holomorphically projective mappings. Ph.D. Thesis, Odessa Univ. 1988. (supervisor S.G. Leiko)
  273. Smetanová D. The regularity problem in the calculus of variation. Ph.D. Thesis, Palacky Univ. Olomouc, 2003. (supervisor O. Krupková)
  274. Sobchuk V.S. -. Ph.D. Thesis, Kyjev, 1967. (supervisor A.D. Aleksandrov)
  275. Trnková M. Grassmannians over A-modules and hyperbolic 3-manifolds. Ph.D. Thesis, Palacky Univ. Olomouc, 2012. (supervisors J. Mikeš, D. Gabai and J. Vanžura)
  276. Vanžurová A. Some algebraic models for second order differential geometry. Ph.D. Thesis, Charles Univ. Prague 1986. (supervizor I. Kolář)
  277. Vashpanova T.Y. LGT-net and deformations of surfaces. Ph.D. Thesis, Odessa Univ. 2013. (supervizor L.L. Bezkorovainaya)
  278. AbdullinV.N. n-dimensionalRiemannian spaces that admit covariantly constant symmetric tensor fields of general type. I, II. Izv.VUZ,Mat. 96:5, 3-13, 1970; 97:6, 3-15, 1970.
  279. Adati T., Yamaguchi S. On some transformation in Riemannian recurrent spaces. TRU Math. Tokyo 3, 8-12, 1967.
  280. Agricola I., Becker-Bender J., Friedrich T. On the topology and the geometry of SO(3)-manifolds. Ann. Global Anal. Geom. 40, 67-84, 2011. Přejít k původnímu zdroji...
  281. Aikou T., Hashiguchi M., Yamauchi K. On Matsumotos Finsler space with time measure. Rep. Fac. Sci., Kagoshima Univ., Math. Phys. Chem. 23, 1-12 1990.
  282. Akbar-Zadeh H. Sur les transformations holomorphiquement projectives de varietes Hermitiannes et Kähleriannes. C.R. Acad. Sci. 304:12, 335-338, 1987.
  283. Akbar-Zadeh H., Couty R. Espaces a tenseur de Ricci parallele admetant des transformations projectives. Rend. Mat. 11:1, 85-96, 1978.
  284. Akbar-Zadeh H., Couty R. Projective transformations projectives of manifolds with Euclidean connection. (French) C.R. Acad. Sci., Paris, I, 295, 349-352, 1982.
  285. Akbar-Zadeh H., Couty R. Projective transformations of some manifolds with a metric connection. (French) C.R. Acad. Sci., Paris, I, 298, 153-156, 1984.
  286. Akbar-Zadeh H., Couty R. Projective transformation of manifolds endowed with a metric connection. (French) Ann. Mat. Pura Appl., IV. 148, 251-275, 1987. Přejít k původnímu zdroji...
  287. AkivisM.A. Projective analog of Egorov transformation. J.Math. Sci.177:4,515-521,2011. Přejít k původnímu zdroji...
  288. Akivis M.A., Shelekhov A.M. CartanLaptev method in the theory of multidimensional three-webs. J. Math. Sci. 177:4, 522-540, 2011. Přejít k původnímu zdroji...
  289. Alekseevsky D.V. Pseudo-Kähler and para-Kähler symmetric spaces. Handbook of pseudo-Riemannian geometry and supersymmetry, IRMA Lect. Math. Theor. Phys. 16, 703-729, 2010. Přejít k původnímu zdroji...
  290. Aminova A.V. Projective-group properties of some Riemannian spaces. Trudy Geom. Sem. 6, 295-316, 1974.
  291. Aminova A.V. On geodesic mappings of the Riemannian spaces. Tensor 46, 179- 186, 1987.
  292. Aminova A.V. K-spaces and spaces V(K). Sov. Math. 34:11, 95-99, 1990.
  293. Aminova A.V. Lie problem, projective groups of two-dimensional Riemannian surfaces, and solitons. Sov. Math. 34:6, 1-9, 1990. ⊲ Izv. VUZ, Mat. 337:6, 3-10, 1990.
  294. Aminova A.V. The Lie algebras of projective motions of the spaces V(K) with Lorentzian signature. Sov. Math. 35:9, 1-13, 1991. ⊲ Izv. VUZ, Mat. 352:9, 3-15, 1991.
  295. Aminova A.V., Aminov N.A.-M. Projective geometry of systems of differential equations: general conceptions. Tensor 62:1, 65-86, 2000.
  296. Aminova A.V., Aminov N.A.-M. Projective geometry of systems of second-order differential equations. Sb. Math. 197:7, 951-975, 2006. ⊲ Mat. Sb. 197:7, 3-28, 2006. Přejít k původnímu zdroji...
  297. Aminova A.V., Aminov N.A.-M. The projective geometric theory of systems of second-order differential equations: straightening and symmetry theorems. Sb. Math. 201:5, 631-643, 2010. Přejít k původnímu zdroji...
  298. Aminova A.V., Kalinin D.A. Quantization of Kähler manifolds admitting H-projective mappings. Tensor, New Ser. 56:1, 1-11, 1995.
  299. Aminova A.V., Kalinin D.A. Lie algebras of H-projective motions of Kähler manifolds of constant holomorphic sectional curvature. Math. Notes 65:6, 679-683, 1999. Přejít k původnímu zdroji...
  300. Amur K., Desai P. Recurrent properties of projectively related spaces. Tensor, New Ser. 29, 40-42, 1975.
  301. Anastasiei M. Metrizable linear connections in vector bundles. Publ. Math. Debrecen 62:3-4, 277-287, 2003. Přejít k původnímu zdroji...
  302. Anderson I., Thompson G. The inverse problem of the calculus of variations for ordinary differential equations. Memoires AMS 98, No. 473, 1992. Přejít k původnímu zdroji...
  303. Arias-Marco T., Kowalski O. Classification of locally homogeneous affine connections with arbitrary torsion on 2-dimensional manifolds. Monatsh. Math. 153, 118, 2008. Přejít k původnímu zdroji...
  304. Bacon P.Y. Desarguesian Klingenberg planes Trans. AMS 241, 343-355, 1978. Přejít k původnímu zdroji...
  305. Bácsó S. A note on geodetic mapping of Finsler spaces. Top. diff. geom., Pap. Colloq., Hajduszoboszló/Hung. 1984, Vol. 1, Colloq. Math. Soc. János Bolyai 46, 131-136, 1988.
  306. Bácsó S. Randers and Kropina spaces in geodesic correspondence. In: Lagrange and Finsler geometry. Kluwer, 61-64, 1996. Přejít k původnímu zdroji...
  307. Bácsó S. On geodesic mappings of special Finsler spaces. Suppl. Rend. Circ. Mat. Palermo, II. 59, 83-87, 1999.
  308. Bácsó S. On a problem of M. Matsumoto and Z. Shen. In: Finsler and Lagrange geometries. Kluwer, 55-61, 2003. Přejít k původnímu zdroji...
  309. Bácsó S., Cheng X. Finsler conformal transformations and the curvature invariances. Publ. Math. Debrecen 70:1-2, 221-231, 2007. Přejít k původnímu zdroji...
  310. Bácsó S., Cheng X., Shen Z. Curvature properties of (alpha;, β)-metrics. In Finsler geometry, Sapporo 2005 - in memory of Makoto Matsumoto, 73-110, Adv. Stud. Pure Math. 48, Math. Soc. Japan, Tokyo, 2007.
  311. Bácsó S., Hashiguchi M., Matsumoto M. Generalized Berwald spaces and Wagner spaces. An. Ştiinţ. Univ. Al. I. Cuza I&acedil;si. Mat. 43:2, 307-321, 1997.
  312. Bácsó S., Ilosvay F., Kis B. Landsberg spaces with common geodesics. Publ. Math. 42:1-2, 139-144, 1993. Přejít k původnímu zdroji...
  313. Bácsó S., Kozma L. On a certain reconstruction of a Rapcsák paper (Über die bahntreuen Abbildungen metrischer Räume, Publ. Math. Debrecen 8 (1961) 285-290). Differential Geom. Appl. 49, 372-379, 2016. Přejít k původnímu zdroji...
  314. Bácsó S., Matsumoto M. Projective changes between Finsler spaces with (alpha;, β)-metric. Tensor, 55:3, 252-257, 1994.
  315. Bácsó S., Matsumoto M. Reduction theorems of certain Landsberg spaces to Berwald spaces. Publ. Math. 48:3-4, 357-366, 1996. Přejít k původnímu zdroji...
  316. Bácsó S., Matsumoto M. On Finsler spaces of Douglas type. A generalization of the notion of Berwald space. Publ. Math. 51:3-4, 385-406, 1997. Přejít k původnímu zdroji...
  317. Bácsó S., Matsumoto M. On Finsler spaces of Douglas type. II: Projectively flat spaces. Publ. Math. 53:3-4, 423-438, 1998. Přejít k původnímu zdroji...
  318. Bácsó S., Matsumoto M. Finsler spaces with the h-curvature tensor dependent on position alone. Publ. Math. 55:1-2, 199-210, 1999. Přejít k původnímu zdroji...
  319. Bácsó S., Matsumoto M. On Finsler spaces of Douglas type. IV: Projectively flat Kropina spaces. Publ. Math. 56:1-2, 213-221, 2000. Přejít k původnímu zdroji...
  320. Bácsó S., Matsumoto M. Reduction theorems of certain Douglas spaces to Berwald spaces. Publ. Math. 62:3-4, 315-324, 2003. Přejít k původnímu zdroji...
  321. Bácsó S., Papp I. A note on a generalized Douglas space. Period. Math. Hung. 48:1-2, 181-184, 2004. Přejít k původnímu zdroji...
  322. Bácsó S., Papp I. Some theorems in special Finsler spaces and its generalizations in a bivector connected space. Publ. Math. Debrecen 84:1-2, 139-146, 2014. Přejít k původnímu zdroji...
  323. Bácsó S., Rezaei B. On R-quadratic Einstein Finsler space. Publ. Math. 76:1-2, 67-76, 2010. Přejít k původnímu zdroji...
  324. Bácsó S., Szilasi Z. Generalized Rabl mappings and Apollonius-type problems. J. Geom. Graph. 11:1, 27-38, 2007.
  325. Bácsó S., Szilasi Z. On the direction independence of two remarkable Finsler tensors. In DGA, 397-406, World Sci. Publ., Hackensack, NJ, 2008. Přejít k původnímu zdroji...
  326. Bácsó S., Szilasi Z. p-Berwald manifolds. Publ. Math. Debrecen 743:4, 369-382, 2009. Přejít k původnímu zdroji...
  327. Bácsó S., Szilasi Z. On the projective theory of sprays. Acta Math. Acad. Paedagog. Nyházi. 26:2, 171-207, 2010.
  328. Bácsó S., Tornai R., Horváth Z. On geodesic mappings of Riemannian spaces with cyclic Ricci tensor. Ann. Math. Inform. 43, 13-17, 2014.
  329. Bai Z.G. On the Riemannian space with some independent concircular transformations. Acta Math. Sinica 14:1, 6274, 1964.
  330. Bailey T.N., Eastwood M.G., Gover A.R. Thomas's structure bundle for conformal, projective and related structures. Rocky Mt. J. Math. 24:4, 1191-1217, 1994. Přejít k původnímu zdroji...
  331. Bao D., Chern S.-S., Shen Z. Rigidity issues on Finsler surfaces. Rev. Roum. Math. Pures Appl. 42:9-10, 707-735, 1997.
  332. Bao D., Shen Z. Finsler metrics of constant positive curvature on the Lie group S3. J. Lond. Math. Soc. II. 66:2, 453-467, 2002. Přejít k původnímu zdroji...
  333. Barbilian D. Zur Axiomatik der projektiven ebenen Ringgeometrien, I. Jahresber. Deutsch. Math.-Verein 50, 179-229, 1940.
  334. Barndorff-Nielsen O.E., Cox D.R., Ried N. The role of differential geometry in statistical geometry. Inst. Statist. Rev. 56, 83-96, 1986. Přejít k původnímu zdroji...
  335. Bayro-Corrochano E., Kähler D. Kinematics of robot manipulators in the motor algebra. In Geometric Computing with Clifford Algebras. Springer, 471-488, 2001. Přejít k původnímu zdroji...
  336. Bazylev V.T. On two ways of definition of characteristic directions of a mapping. Differ. Geom. Mnogoobr. Figur 20, 14-19, 1989.
  337. Bejan C.-L., Drută-Romanius S.-L. Projective curvature of the tangent bundle with natural diagonal metric. Filomat 29:3, 401-410, 2015. Přejít k původnímu zdroji...
  338. Bejancu A., Farran H.R. Finsler metrics of positive constant flag curvature on Sasakian space forms. Hokkaido Math. J. 31:2, 459-468, 2002. Přejít k původnímu zdroji...
  339. Belova O.O. The third type bunch of connections induced by an analog of Norden's normalization for the Grassmann-like manifold of centered planes. Miskolc Math. Notes 14:2, 557-560, 2013. Přejít k původnímu zdroji...
  340. Belova O.O. The curvature tensor of an analogue of Neifel'd connection on a Grassmannlike manifold of centered planes. Differ. Geom.Mnogoobraz. Figur 46, 45-53, 2015.
  341. Belova O.O. Inducing an analogue of the Neifel'd connection of a space of centred planes. Differ. Geom. Mnogoobraz. Figur 47, 24-28, 2016.
  342. Belova O.O. Neifeld's connection induced on the Grassmann manifold. Acta Univ. Palack. Olomuc. Math. 55:1, 11-14, 2016.
  343. Belova O.O. On torsion of an analogue of the Neifel'd connection in a space of centered planes. Differ. Geom. Mnogoobraz. Figur 48, 25-32, 2017.
  344. Belova O.O. The Grassmann-like manifold of centered planes. Mat. Zametki 104:6, 812-822, 2018. Přejít k původnímu zdroji...
  345. Belova O., Mikeš J., Strambach K. Complex curves as lines of geometries. Results Math. 71:1-2, 145-165, 2017. Přejít k původnímu zdroji...
  346. Belova O., Mikeš J., Strambach K. Geodesics and almost geodesics curves. Results Math. 73:4, Art. 154, 12 pp., 2018. Přejít k původnímu zdroji...
  347. Belova O., Mikeš J., Strambach K. Almost geodesics curves. In 13th Int. Conf. on Geometry and Appl., J. Geom. 109:17, 16-17, 2018.
  348. Belova O., Mikeš J., Strambach K. About almost geodesic curves. Filomat 33:4, 2019. Přejít k původnímu zdroji...
  349. Beltrami E. Risoluzione del problema: riportari i punti di una superficie sopra un piano in modo che le linee geodetiche vengano rappresentante da linee rette. Ann. Mat. 1:7, 1865. Přejít k původnímu zdroji...
  350. Beltrami E. Teoria fondamentale degli spazi di curvatura constante. Ann. Mat. 2:2, 232-255, 1868. Přejít k původnímu zdroji...
  351. Beltrami E. Saggio di interpretazione della Geometria non-euclidea. Battagl. G. 6, 285-315, 1868. Transl.: Essay on the interpretation of noneuclidean geometry.
  352. Benenti S. Special symmetric two-tensors, equivalent dynamical systems, cofactor and bi-cofactor systems. Appl. Math. 87, 33-91, 2005. Přejít k původnímu zdroji...
  353. Benn I.M., Charlton P. Dirac symmetry operators from conformal Killing-Yano tensors. Classical Quantum Gravity 14:5, 1037-1042, 1997. Přejít k původnímu zdroji...
  354. Berezovski V.E., Bácsó S., Mikeš J. Almost geodesic mappings of affinely connected spaces that preserve the Riemannian curvature. Ann. Math. Inform. 45, 3-10, 2015.
  355. Berezovski V.E., Bácsó S., Mikeš J. Diffeomorphism of affine connected spaces which preserved Riemannian and Ricci curvature tensors. Miskolc Math. Notes 18:1, 117-124, 2017. Přejít k původnímu zdroji...
  356. Berezovski V.E., Mikeš J. On the classification of almost geodesic mappings of affine-connected spaces. DGA, Proc. Conf., Dubrovnik/Yugosl. 1988, 41-48, 1989.
  357. Berezovski V.E., Mikeš J. On a classification of almost geodesic mappings of affine connection spaces. Acta Univ. Palacki. Olomuc. Math. 35, 21-24, 1996.
  358. Berezovski V.E., Mikeš J. On almost geodesic mappings of the type π1 of Riemannian spaces preserving a system n-orthogonal hypersurfaces. Rend. Circ. Mat. Palermo, II. Ser. 59, 103-108, 1999.
  359. Berezovski V.E., Mikeš J. Almost geodesic mappings of type π1 onto generalized Ricci-symmetric manifolds. Uch. zap. Kazan. Univ. Ser. Fiz.-Math. 151:4, 9-14, 2009.
  360. Berezovski V.E., Mikeš J. On canonical almost geodesic mappings of the first type of affinely connected spaces. Russ. Math. 58:2, 1-5, 2014. ⊲ Izv. vuz, Mat. 2, 3-8, 2014. Přejít k původnímu zdroji...
  361. Berezovski V.E., Mikeš J., Vanžurová A. Canonical almost geodesic mappings of type π1 onto pseudo-Riemannian manifolds. DGA Proc. Conf., World Sci. 65-76, 2008. Přejít k původnímu zdroji...
  362. Berezovski V.E., Mikeš J., Vanžurová A. Almost geodesic mappings onto generalized Ricci-symmetric manifolds. Acta Math.Acad. Paed. Nyházi. (N.S.) 26:2, 221-230, 2010.
  363. Berezovski V.E., Mikeš J., Vanžurová A. Fundamental PDE's of the canonical almost geodesic mappings of type ~π1. Bull. Malays. Math. Sci. Soc. 37:3, 647-659, 2014.
  364. Berezovski V.E., Mikeš J., Chudá H., Chepurnaya E.E. Canonical almost geodesic mappings that preserve the projective curvature tensor. Russian Math. 61:6, 1-5, 2017. Přejít k původnímu zdroji...
  365. Berwald L. Untersuchung der Krümmung allgemeiner metrischer Räume auf Grund des in ihnen herrschenden Parallelismus. (German) Math. Z. 25, 40-73, 1926. Přejít k původnímu zdroji...
  366. Berwald L. On Finsler and Cartan geometries. 3. Two-dimensional Finsler spaces with rectilinear extremals. Ann. Math. 42, 84-112, 1941. Přejít k původnímu zdroji...
  367. Berwald L. Über Finslersche und Cartansche Geometrie. IV. Projektivkrümmung allgemeiner affiner Räume und Finslerscher Räume skalarer Krümmung. (German) Ann. Math. 48, 755-781, 1947. Přejít k původnímu zdroji...
  368. Beskorovainaya L.L. Canonical A-deformations, preserving the length of lines of curvature of a surface. Mat. Sb., 97:139, 163-176, 1975. ⊲ Math. USSR, Sb. 26, 151-164, 1975. Přejít k původnímu zdroji...
  369. Beskorovainaya L.L. A-deformation of a surface of a three-dimensional Riemann space with stationary lengths of asymptotic lines. Ukrain. Geom. Sb. 21, 6-10, 1978.
  370. Beskorovainaya L.L. On infinitesimal areal deformations of ovaloids. Izv. Vyssh. Uchebn. Zaved., Mat. 252:5, 69-71, 1983. ⊲ Sov. Math. 27:5, 81-85, 1983.
  371. Bezkorovainaya L.L. Surfaces formed by the real and imaginary parts of an analytic function: A-deformations occurring independently and simultaneously. Ukr. Math. J. 70:4, 513-531, 2018. Přejít k původnímu zdroji...
  372. Bezkorovainaya L.L. Geometric aspects of analytic functions. J. Math. Sci. (New York) 236:1, 83-97, 2019. Přejít k původnímu zdroji...
  373. Bezkorovainaya L.L., Vashpanova T.Yu. A-deformations of a surface with stationary lengths of LGT-lines. Ukrainian Math. J. 62:7, 1018-1027, 2010. Přejít k původnímu zdroji...
  374. Bingen F. Géométrie projective sur un anneau semiprimaire. Acad. Roy. Belg. Bull. Cl. Sci. 52:5, 13-24, 1966. Přejít k původnímu zdroji...
  375. Bobienski B., Nurowski P. Irreducible SO(3)-geometries in dimension five. J. Reine and Angew. Math. 605, 51-93, 2007. Přejít k původnímu zdroji...
  376. Bolsinov A.V., Kiosak V.A., Matveev V.S. Fubini Theorem for pseudo-Riemannian metrics. J. Lond. Math. Soc. (2) 80:2, 341-356, 2009. arXiv: 0806.2632. Přejít k původnímu zdroji...
  377. Bolsinov A.V., Matveev V.S. Geometrical interpretation of Benenti's systems. J. Geom. Phys. 44:4, 489-506, 2003. Přejít k původnímu zdroji...
  378. BolsinovA.V.,MatveevV.S.,FomenkoA.T.Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry. Sb.Math. 189:10, 1441-1466, 1998. Přejít k původnímu zdroji...
  379. Bolsinov A.V., Matveev V.S., Pucacco G. Normal forms for pseudo-Riemannian 2-dimensional metrics whose geodesic flows admit integrals quadratic in momenta. J. Geom. Phys. 59:7, 1048-1062, 2009. Přejít k původnímu zdroji...
  380. Bonnet O. Manuscript. École Polytechnique 24, 204-230, 1865.
  381. Brinkmann H.W. Einstein spaces which mapped conformally on each other. Math. Ann. 94:1, 119-145, 1925. Přejít k původnímu zdroji...
  382. Brito F.G.B., Walczak P.G. Totally geodesic foliations with integrable normal bundles. Bol. Soc. Bras. Mat. 17:1, 41-46, 1986. Přejít k původnímu zdroji...
  383. Bryant R., Dunajski M., Eastwood M. Metrisability of two-dimensional projective structures. J. Diff. Geom. 83:3, 465-499, 2009. arXiv: 0801.0300v1 [math.DG]. Přejít k původnímu zdroji...
  384. Bryant R., Manno G., Matveev V.S. A solution of a problem of Sophus Lie: normal forms of two-dimensional metrics admitting two projective vector fields. Math. Ann. 340:2, 437-463, 2008. Přejít k původnímu zdroji...
  385. Burago Yu., Gromov M., Perel'man G. A.D.Aleksandrov spaces with curvatures bounded below. Russian Math. Surveys 47:2, 1-58, 1992. Přejít k původnímu zdroji...
  386. Burgetová R., Klucký D. The spectrum of a Cartesian product of plural algebras. Č asopis pro pěstov. matem. 106:4, 402-406, 1981. Přejít k původnímu zdroji...
  387. Burlakov M., Mikeš J., Pan'zhenskii V. Professor L.E. Evtushik: scientist and educator. J. Math. Sci. (New York) 207:3, 351-353, 2015. Přejít k původnímu zdroji...
  388. Caminha A. The geometry of closed conformal vector fields on Riemannian spaces. Bull. Braz. Math. Soc. 42, 277-300, 2011. Přejít k původnímu zdroji...
  389. Caminha A., Souza P., Camargo F. Complete foliations of space forms by hypersurfaces. Bull. Braz. Math. Soc. (N.S.) 41, 339-353, 2010. Přejít k původnímu zdroji...
  390. Cariglia M. Quantum mechanics of Yano tensors: Dirac equation in curved spacetime. Classical Quantum Gravity 21:4, 1051-1077, 2004. Přejít k původnímu zdroji...
  391. Cartan É. Sur les variété à connexion projective. S. M. F. Bull. 52, 205-241, 1924. Přejít k původnímu zdroji...
  392. Cartan É. Sur une classe remarquable d'espaces de Riemann. I, II. Bull. S.M.F. 54, 214-264, 1926; 55, 114-134, 1927. Přejít k původnímu zdroji...
  393. Cartan É. Les espaces riemanniens symétriques. Verhandlungen Kongress Zürich, 1, 152-161, 1932.
  394. Cartan É. Spaces of connexion projective. (English) Abh. Semin. Vektor- und Tensoranalysis usw., Moskau 4, 147-159, 1937.
  395. Carter B., McLenaghan R.G. Generalized total angular momentum operator for the Dirac equation in curved space-time. Phys. Rev. D, 19, 1093-1097, 1997. Přejít k původnímu zdroji...
  396. Chaki M.C., Ray S. Space-times with covariant-constant energy-momentum tensor. Int. J. Theor. Phys. 35:5, 1027-1035, 1996. Přejít k původnímu zdroji...
  397. Čech E. Les groupes de Betti d'un complexe infini. Fund. Math. 25:1, 33-44, 1935. Přejít k původnímu zdroji...
  398. Chen X., Mo X., Shen Z. On the flag curvature of Finsler metrics of scalar curvature. J. Lond. Math. Soc., II. 68:3, 762-780, 2003. Přejít k původnímu zdroji...
  399. Chen X., Shen Z. On Douglas metrics. Publ. Math. 66:3-4, 503-512, 2005. Přejít k původnímu zdroji...
  400. Cheng K.S., Ni W.T. Necessary and sufficient conditions for the existence of metrics in two-dimensional affine manifolds. Chinese J. Phys. 16, 228-232, 1978.
  401. Chepurna O., Hinterleitner I. On the mobility degree of (pseudo-) Riemannian spaces with respect to concircular mappings. Miskolc Math. Notes 14:2, 561-568, 2013. Přejít k původnímu zdroji...
  402. Chepurna O., Kiosak V., Mikeš J. On geodesic mappings preserving the Einstein tensor. Acta Univ. Palacki. Olomuc., Math. 49:2, 49-52, 2010.
  403. Chepurna O., Kiosak V., Mikeš J. Conformal mappings of Riemannian spaces which preserve the Einstein tensor. J. Appl. Math. Aplimat, 3:1, 253-258, 2010.
  404. Chepurna O., Mikeš J. Holomorphically projective mappings preserving the Einstein tensor. J. Appl. Math. Aplimat 4:2, 187-192, 2011.
  405. Cherevko E. Geodesic mappings preserving the stress-energy tensor. Mat. Visn. Nauk. Tov. Im. Shevchenka 10, 105-114, 2013.
  406. Chern S.S. Finsler geometry is just Riemannian geometry without the quadratic restriction. Notices AMS 43:9, 959-963, 1996.
  407. Chern S.S. Back to Riemann. Mathematics: frontiers and perspectives. AMS, 33-34, 2000.
  408. Chernyshenko V.M. Affine-connected spaces with a correspondent complex of geodesics. Collection of Works of Mech.-Math. Chair of Dnepropetrovsk Univ. 6, 105-118, 1961.
  409. Chernyshenko V.M. Spaces with a special complex of geodesics. Tr. Semin. Vektor. Tenzor. Anal. 11, 253-268, 1961.
  410. Chiossi S.G., Fino A. Nearly integrable SO(3)-structures on 5-dimensional Lie groups. J. Lie Theory, 17, 539-562, 2007.
  411. Chodorová M., Mikeš J. A note to K-torse-forming vector fields on compact manifolds with complex structure. Acta Physica Debrecina, 42, 11-18, 2008.
  412. Chudá H., Chodorová M., al Lamy Raad J. On holomorphically projective mappings onto almost Hermitian spaces. J. Appl. Math. Aplimat 4:2, 193-198, 2011.
  413. Chudá H., Chodorová M., Mikeš J. On holomorphically projective mappings with certain initial conditions. J. Appl. Math. Aplimat 4:2, 673-678, 2011.
  414. Chudá H., Chodorová M., Shiha M. On composition of conformal and holomorphically projective mappings between conformally Kählerian spaces. J. Appl. Math. Aplimat 5:3, 91-96, 2012. 3
  415. Chudá H., Mikeš J. On F-planar mappings with a certain initial conditions. Proc. 5th Int. Conf. Aplimat, Part II, 83-88, 2006.
  416. Chudá H., Mikeš J. On e-structures generated by almost geodesic mapping π2(e), e = ±1. Abstr. Int. Conf. Geometry in Odessa. ISBN 966-8164-13-X, 6-8, 2006.
  417. Chudá H., Mikeš J. On first quadratic integral of geodesics with a certain initial conditions. Proc. 6th Int. Conf. Aplimat, 85-88, 2007.
  418. Chudá H., Mikeš J. Geodesic and F-planar mappings with certain initial conditions. Proc. of the Int. Geom. Center, 1:1-2, 159-167, 2008.
  419. Chudá H., Mikeš J. Conformally geodesic mappings satisfying a certain initial condition. Arch. Math. 47, 221-226, 2011.
  420. Chudá H., Mikeš J. On composition of conformal and geodesic mappings between pseudo-Riemannian manifolds. 7th Conf. Techn. Univ. Brno, 195-199, 2011.
  421. Chudá H., Mikeš J., Peška P., Shiha M. On holomorphically projective mappings of equidistant parabolic Kähler spaces. Geom., Integr. and Quantiz. 19, 115-121, 2018. Přejít k původnímu zdroji...
  422. Chudá H., Mikeš J., Sochor M. Rotary diffeomorphism onto manifolds with affine connection. Geom., Integr. and Quantiz. 18, 130-137, 2017. Přejít k původnímu zdroji...
  423. Chudá H., Peška P., Guseva N. On F" 2 -planar mappings with function ε of (pseudo-) Riemannian manifolds. Filomat 31:9, 2683-2689, 2017. Přejít k původnímu zdroji...
  424. Chudá H., Shiha, M. Conformal holomorphically projective mappings satisfying a certain initial condition. Miskolc Math. Notes 14:2, 569-574, 2013. Přejít k původnímu zdroji...
  425. ĆirićM.S., ZlatanovićM.Lj., StankovićM.S., VelimirovićLj.S. On geodesicmappings of equidistant generalizedRiemannian spaces. Appl.Math.Comp. 218:12, 6648-6655, 2012. Přejít k původnímu zdroji...
  426. Clifford W.K. Preliminary scretch of biquaternions. Proc. London Math. Soc. 4, 1873.
  427. Coburn N. Unitary spaces with corresponding geodesic. Bull. AMS 47, 901-910, 1941. Přejít k původnímu zdroji...
  428. Cocos M. A note on symmetric connections. J. Geom. Phys. 56:3, 337-343, 2006. Přejít k původnímu zdroji...
  429. Constantinescu E. Riemannian manifolds with curvature tensor invariant to the projective transformations. Lucr. Conf. nat. geom. si topol., Tirgoviste, 12-14 apr., 1986. Bucuresti, 49-141, 1988.
  430. Couty R. Transformations projectives sur un espace d'Einstein complect. C.r. Acad. Sci. 252:8, 1096-1097, 1961.
  431. Couty R. Transformations projectives des varietes presque kahleriennes. C.r. Acad. Sci. 254:24, 4132-4134, 1962.
  432. Crampin M., Saunders D.J. Projective connections. J.Geom. Phys. 57:2, 691-727, 2007. Přejít k původnímu zdroji...
  433. Crampin M., Saunders D.J. Fefferman-type metrics and the projective geometry of sprays in two dimensions. Math. Proc. Camb. Philos. Soc. 142:3, 509-523, 2007. Přejít k původnímu zdroji...
  434. Crasmareanu M. The decomposition and recurency. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 40, 43-46, 2001.
  435. Cui N., Shen Y.B. Projective change between two classes of (alpha;, β)-metrics. Differ. Geom. Appl. 27:4, 566-573, 2009. Přejít k původnímu zdroji...
  436. Cvetković M., Velimirović Lj.S. Application of shape operator under infinitesimal bending of surface. Filomat 33:4, 2019. Přejít k původnímu zdroji...
  437. Dagdeviren A., Yuce S. Dual quaternions and dual quaternionic curves. Filomat 33:4, 2019. Přejít k původnímu zdroji...
  438. Defever F., Deszcz R. A note on geodesic mappings of pseudosymmetric Riemannian manifolds. Colloq. Math. 62:2, 313-319, 1991. Přejít k původnímu zdroji...
  439. Defever F., Deszcz R. On semi-Riemannian manifolds satisfying the condition R.R = Q(S,R). Geom. and topol. III, Proc.Workshop, Leeds/UK 1990, 108-130, 1991.
  440. Defever F., Deszcz R. Some results on geodesic mappings of Riemannian manifolds satisfying the condition R. R = Q(S,R). Period. Math. Hung. 29:3, 267-276, 1994. Přejít k původnímu zdroji...
  441. Defever F., Deszcz R., Prvanović M. On warped product manifolds satisfying some curvature condition of pseudosymmetric type. Bull. Greek Math. Soc. 36, 43-62, 1994.
  442. Defever F., Deszcz R., Verstraelen L., Vrancken L. On pseudosymmetric space-times. J. Math. Phys. 35:11, 5908-5921, 1994. Přejít k původnímu zdroji...
  443. Deicke A. Über die Finsler-Räume mit Ai = 0. Arch. Math. 4, 45-51, 1953. Přejít k původnímu zdroji...
  444. Derdzinski A., Shen C.I. Codazzi tensor fields, curvature and Pontryagin forms. Proc. London Math. Soc. 47, 15-26, 1983. Přejít k původnímu zdroji...
  445. Deszcz R. Remarks on projective collineations in some Riemannian spaces. (Polish) Pr. nauk. Inst. Mat., Politech. Wroclaw 8, 3-9, 1973.
  446. Deszcz R. On semi-decomposable conformally recurrent and conformally birecurrent Riemannian spaces. Pr. nauk. Inst. Mat., Politech. Wroclaw 16:12, 27-33, 1976.
  447. Deszcz R. On some Riemannian manifolds admitting a concircular vector field. Demonstr. Math. 9, 487-495, 1976. Přejít k původnímu zdroji...
  448. Deszcz R. On Ricci-pseudo-symmetric warped products. Demonstr. Math. 22:4, 1053-1065, 1989. Přejít k původnímu zdroji...
  449. Deszcz R., Grycak W. On manifolds satisying some curvature conditions. Colloq. Math. 57:1, 89-92, 1989. Přejít k původnímu zdroji...
  450. Deszcz R., Hotloś M. On geodesic mappings in pseudo-symmetric manifolds. Bull. Inst. Math., Acad. Sin. 16:3, 251-262, 1988.
  451. Deszcz R., Hotloś M. Remarks on Riemannian manifolds satisfying certain curvature condition imposed on the Ricci tensor. Pr. Nauk. Politechn. Szczecin., Inst. Math. 380:11, 23-34, 1988.
  452. Deszcz R., Hotloś M. Notes on pseudo-symmetric manifolds admitting special geodesic mappings. Soochow J. Math. 15:1, 19-27, 1989.
  453. DeTurck D.M. Existence of metrics with prescribed Ricci curvature: Local theory. Invent. Math. 65, 179-207, 1981. Přejít k původnímu zdroji...
  454. DeTurck D.M., Kazdan J.L. Some regularity theorems in Riemannian geometry. Ann. Sci. Éc. Norm. Supér. (4) 14:3, 249-260, 1981. Přejít k původnímu zdroji...
  455. Dini U. Sobre un problema che si presenta nella teoria generale delle rappresentazioni geografiche di una superficie su di unaltra. Ann. Mat. 3:2a, 1869. Přejít k původnímu zdroji...
  456. Dmitrieva V.V. Point-invariant classes of third-order ordinary differential equations. Math. Notes 70:2, 175-180, 2001. ⊲ Mat. Zametki 70:2, 195-200, 2001. Přejít k původnímu zdroji...
  457. Domashev V.V., Mikeš J. Theory of holomorphically projective mappings of Kählerian spaces. Dep. in VINITI 1977.
  458. Domashev V.V., Mikeš J. Theory of holomorphically projective mappings of Kählerian spaces. Math. Notes 23, 160-163, 1978. ⊲ Mat. Zametki 23, 297-303, 1978. Přejít k původnímu zdroji...
  459. Douglas J. The general geometry of paths. Ann. Math. 29, 143-168, 1928. Přejít k původnímu zdroji...
  460. Doupovec M. Torsions of connections on time-dependent Weil bundles. Colloq. Mat. 95, 53-62, 2003. Přejít k původnímu zdroji...
  461. Doupovec M., Kurek J., Mikulski W.M. On the symmetrization of jets on vector bundles. Filomat 33:4, 2019. Přejít k původnímu zdroji...
  462. Doupovec M., Mikulski W.M. Some geometric constructions of second order connections. Ann. Univ. Mariae Curie-Sklodowska, Sect. A 61, 15-22, 2007.
  463. Draghici T.C. On geodesic correspondence of pseudo-Riemannian manifolds. Stud. Cercet. mat. 43:1/2, 25-36, 1991. ¨
  464. Dušek Z., Kowalski O. How many are affine connections with torsion. Arch. Math. 50:5, 257-264, 2014. Přejít k původnímu zdroji...
  465. Dušek Z., Kowalski O. How many are torsion-less affine connections in general dimension? Adv. Geom. 16:1, 71-76, 2016. Přejít k původnímu zdroji...
  466. Dušek Z., Kowalski O. How many Ricci flat affine connections are there with arbitrary torsion? Publ. Math. Debrecen 88:3-4, 511-516, 2016. Přejít k původnímu zdroji...
  467. Eastwood M. Notes on projective differential geometry. IMA,Math.Appl. 144, 2- 16, 2008. Přejít k původnímu zdroji...
  468. Eastwood M., Matveev V. Metric connections in projective differential geometry. IMA, Math. Appl. 144, 339-350, 2008. Přejít k původnímu zdroji...
  469. Eddington A.S. Proc. Roy. Soc. London 99A, 1921.
  470. Efron B. Defining the curvature of a statistical problem (with applications to second order efficiency). Ann. Stat. 3, 1189-1242, 1975. Přejít k původnímu zdroji...
  471. Einstein A. The Bianchi identities in the generalized theory of gravitation. Can. J. Math. 2, 120-128, 1950. Přejít k původnímu zdroji...
  472. Eisenhart L.P. Fields of parallel vectors in a Riemannian geometry. Trans. Amer. Math. Soc. 27:4, 563-573, 1925. Přejít k původnímu zdroji...
  473. Eisenhart L.P., Veblen O. The Riemann geometry and its generalization. Proc. London Math. Soc. 8, 19-23, 1922. Přejít k původnímu zdroji...
  474. Eells J., Sampson J.H. Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109-160, 1964. Přejít k původnímu zdroji...
  475. Esenov K.R. On the properties of generalized equidistant Kählerian spaces that admit of special, second-type, almost geodesic mappings. Invest. in Topol. Gener. Spaces, In: Research Works, Frunze Bishkek, 81-84, 1988.
  476. Evtushik L.E., Hinterleitner I., Guseva N.I., Mikeš J. Conformal mappings onto Einstein spaces. Russian Math. 60:10, 5-9, 2016. Přejít k původnímu zdroji...
  477. Evtushik L.E., Kiosak V.A., Mikeš J. The mobility of Riemannian spaces with respect to conformal mappings onto Einstein spaces. Math Russ. 54:8, 29-33, 2010. Přejít k původnímu zdroji...
  478. Faulkner J.R. Barbilian planes. Geom. Dedicata 30, 125-181, 1989. Přejít k původnímu zdroji...
  479. Faure C.-A. Morphisms of projective spaces over rings. Adv. Geom. 4, 19-31, 2004. Přejít k původnímu zdroji...
  480. Fedishchenko S.I. Infinitely small transformations preserving the curvature of a Riemannian space. Math. Notes, 6:4, 680-685, 1969. Přejít k původnímu zdroji...
  481. Fedishchenko S.I. Special conformal mappings of Riemannian spaces. II. Ukrain. Geom. Sb. 25, 130-137, 1982.
  482. Fedorova A., et al. The only Kähler manifold with degree of mobility at least 3 is (CP(n), gFubini-Study). Proc. Lond. Math. Soc. (3) 105:1, 153-188, 2012. Přejít k původnímu zdroji...
  483. Ferapontov E.V. Autotransformations with respect to solutions and hydrodynamic symmetry. Differ.Equations 27:7, 1991, 885-895. ⊲ Differ.Uravn. 27:7, 1250-1263, 1991.
  484. Ferrar J.C., Veldkamp F.D. Neighbor-preserving homomorphisms between ring planes. Geom. Dedicata 18, 11-33, 1985. Přejít k původnímu zdroji...
  485. Fialkow A. Conformals geodesics. Trans. AMS 45, 443-473, 1939. Přejít k původnímu zdroji...
  486. Florea D. Spatii Riemann in correspondenta geodesica. Stud. si cerc. mat. 40:6, 467-470, 1988.
  487. Fomenko V.T. On the unique determination of closed surfaces with respect to geodesic mappings. Dokl. Akad. Nauk 407:4, 453-456, 2006. Přejít k původnímu zdroji...
  488. Fomin V.E. On the projective correspondence of two Riemannian spaces of infinite dimension. Tr. Geom. Semin. 10, 86-96, 1978.
  489. Fomin V.E. On geodesic mappings of infinite-dimensional Riemannian spaces onto symmetric spaces of an affine connection. Tr. Geometr. Sem. Kazan, 11, 93-99, 1979.
  490. Fomin V.E. A pair of infinite-dimensional Levi-Civita spaces can have no general geodesic. Tr. Geom. Semin. Kazan, 17, 79-83, 1986.
  491. Formella S. Geodätische Abbildungen der Riemannschen Mannigfaltigkeiten auf Einsteinsche Mannigfaltigkeiten. Tensor, 39, 141-147, 1982.
  492. Formella S. On geodesic mappings in Einstein manifolds. Coll. Math. Soc. J. Bolyai, 46, 483-492, 1984.
  493. Formella S. On geodesic mappings in some riemannian and pseudo-riemannian manifolds. Tensor, 46, 311-315, 1987.
  494. Formella S. Geodesic mappings between Einstein manifolds. Pr. Nauk. Politech. Szczec. 323, Inst. Mat. 9, 41-47, 1987.
  495. Formella S. On some class of manifold with harmonic conformal curvature. Pr. Nauk. Politechn. Szczecin., Inst. Math. 380:11, 35-41, 1988.
  496. Formella S. Projective structures in Sinyukov manifolds. Coll. Math. Soc. J. Bolyai. 56. Diff. geom. Eger/Hungary, 263-271, 1989.
  497. Formella S. Generalized Einstein manifolds. Rend.Circ.mat. Palermo, 22, 49-58, 1990.
  498. Formella S. On generalized Ricci-recurrent Riemannian manifolds. Pr. Nauk. Politechn. Szczecin., Inst. Math. 411:12, 15-23, 1991.
  499. Formella S. Geodesic mappings of pseudo-Riemannian manifolds. Demonstr. Math. 27:2, 449-460, 1994. Přejít k původnímu zdroji...
  500. Formella S. A note on geodesic and almost geodesic mappings of homogeneous Riemannian manifolds. Opusc. Math. 25:2, 181-187, 2005.
  501. Formella S., Mikeš J. Geodesic mappings of Einstein spaces. Szczecińske roczniky naukove, Ann. Sci. Stetinenses, 9:1, 31-40, 1994. Přejít k původnímu zdroji...
  502. Formella S., Policht J. On Riemannian manifolds admitting conformal and geodesic mappings. Pr. Nauk. Politech. Szczec. 326, Inst. Mat. 10, 97-102, 1987.
  503. Formella S., Policht J. On geodesic-Ricci-flat Riemannian manifolds. Pr. Nauk. Politech. Szczec. 323, Inst. Mat. 9, 49-55, 1987.
  504. Fu F., Yang X., Zhao P. Some properties of S-semi-symmetric metric connections. Int. J. Contemp. Math. Sci. 6:37-40, 1817-1827, 2011.
  505. Fu F., Yang X., Zhao P. Geometrical and physical characteristics of a class of conformal mappings. J. Geom. Phys. 62:6, 1467-1479, 2012. Přejít k původnímu zdroji...
  506. Fubini G. Sui gruppi transformazioni geodetiche. Mem. Acc. Torino, 2, 261-313, 1903.
  507. Fubini G. Sulle coppie di varieta geodeticamente applicabili. Acc. Lincei, 14, 678-683; 315-322, 1905.
  508. Fujii Masami. Some Riemannian manifolds admitting a concircular scalar field. Math. J. Okayama Univ. 16, 1-9, 1973.
  509. Garcia-Rio E., Vanhecke L., Vazquez-Abal E. Harmonic endomorphism fields. Illinois J. Math. 41:1, 23-30, 1997. Přejít k původnímu zdroji...
  510. Gavril'chenko M.L. On geodesic deformations of hypersurfaces. Proc. Conf. Samarkand, 1972.
  511. Gavril'chenko M.L. Geodesic deformations of Riemannian space. DGA, World Sci. 47-53, 1989.
  512. Gavril'chenko M.L., Kinzerska N.N. Infinitesimal geodesic deformations of the totally geodesic manifolds. DGA, Brno: Masaryk Univ. 185-189, 1999.
  513. Gavril'chenko M.L., Kiosak V.A., Mikeš J. Geodesic deformations of hypersurfaces of Riemannian spaces. Russ. Math. 11, 20-26, 2005. ⊲ Izv. VUZ, Mat. 11, 23-29, 2004.
  514. Gerlich G. Representation of two-dimensional planes by affine connections on Riemannian metrics. (German) Braunschweig: Univ. Braunschweig, 2000.
  515. GerlichG.Stable projective planes withRiemannianmetrics.Arch.Math.79, 317-320, 2002. Přejít k původnímu zdroji...
  516. GerlichG. Topological affine planes with affine connections. Adv. Geom.5, 265-278, 2005. Přejít k původnímu zdroji...
  517. Gerlich G. Cones for the Moulton planes. J. Geom. 88:1-2, 30-40, 2008. Přejít k původnímu zdroji...
  518. Gibbons G.W., Rietdijk R.H., van Holten J.W. SUSY in the sky. Nucl. Phys., B 404:1-2, 42-6, 1993. Přejít k původnímu zdroji...
  519. Gibbons G.W., Ruback P.J. The hidden symmetries of multi-centre metrics. Commun. Math. Phys. 115:2, 267-300, 1988. Přejít k původnímu zdroji...
  520. Glodek E. A note on Riemannian spaces with recurrent projective curvature. Pr. nauk. Inst. Mat., Politech. Wroclaw, 1, 9-12, 1970.
  521. Glodek E. On Riemannian conformally symmetric spaces admitting projective collineations. Colloq. Math. 26, 123-128, 1972. Přejít k původnímu zdroji...
  522. Golab S. Über die Metrisierbarkeit der affin-zusammenhängenden Räume. Tensor 9, 1-7, 1959.
  523. Golikov V.I. Geodesic mapping of gravitational fields of general type. Trudy Sem. Vektor. Tenzor. Anal. 12, 97-129, 1963.
  524. Gorbatyi E.Z. On geodesic mapping of equidistant Riemannian spaces and first class spaces. Ukr. Geom. Sb. 12, 45-53, 1972.
  525. Gover A.R., Nurowski P. Obstructions to conformally Einstein metrics in n dimensions. J. Geom. Phys. 56:3, 450-484, 2006. Přejít k původnímu zdroji...
  526. Gover A.R., Šilhan J. The conformal Killing equation on forms-prolongations and applications. Diff. Geom. Appl. 26:3, 244-266, 2008. Přejít k původnímu zdroji...
  527. Gray A. Nearly Kähler manifolds. J. Differ. Geom. 4, 283-309, 1970. Přejít k původnímu zdroji...
  528. GrayA. Einstein-likemanifolds which are not Einstein. Geom.Dedicata 7, 259-280,1978. Přejít k původnímu zdroji...
  529. Gribkov I.V. A characteristic property of Riemannian and pseudo-Riemannian metric with general geodesics. In abstr.: 8th Conf. Diff. Geom., Odessa, p. 39, 1984.
  530. Grebenyuk M., Mikeš J. Bundle of projective normals for hyper-zone in non-Euclidean space. Proc.Contr. 7th Conf.Math. and Phys.Brno, 113-118, 2011.
  531. GromovM.L. Isometric imbeddings and immersions. Sov.Math., Dokl.11,794-797,1970.
  532. Gromov M.L., Rokhlin V.A. Embeddings and immersions in Riemannian geometry. Russ. Math. Surv. 25:5, 1-57, 1970. Přejít k původnímu zdroji...
  533. Grünwald J. Über duale Zahlen und ihre Anwendung in der Geometrie. Monatsh. Math. 17, 81-136, 1906. Přejít k původnímu zdroji...
  534. Hacisalihoglu H.H., Amirov A.Kh. The problem of determining a Riemannian metric. Dokl. Math. 56:2, 694-695, 1997. ⊲ Dokl. Ross. Akad. Nauk 356:3, 297-298, 1997.
  535. Hacisalihoglu H.H., Amirov A.Kh. To the question of interrelation between the metric and the curvature tensor in an n-dimensional Riemannian space. Sib. Math. J. 39:4, 864-871, 1998. ⊲ from Sib. Mat. Zh. 39:4, 1005-1012, 1998. Přejít k původnímu zdroji...
  536. Haddad M. Holomorphically-projective mappings of T-quasisemisymmetric and generally symmetric Kählerian spaces. DGA, SilesianUniv.Math. Publ. 1, 137-141, 1993.
  537. Haesen S., Verstraelen L. Properties of a scalar curvature invariant depending on two planes. Manuscripta math. 122, 59-72, 2007. Přejít k původnímu zdroji...
  538. Hall G.S. Killing-Yano tensors in general relativity. Int. J. Theor. Phys. 26, 71-81, 1987. Přejít k původnímu zdroji...
  539. Hall G. Some remarks on the Weyl projective tensor in space-times. Adv. in Lorentzian geometry. Aachen: Shaker Verlag. 89-100, 2008.
  540. Hall G. Symmetries in 4-dimensional manifolds. Filomat 33:4, 2019. Přejít k původnímu zdroji...
  541. Hall G.S., Lonie D.P. The principle of equivalence and projective structure in spacetimes. Classical Quantum Gravity 24:14, 3617-3636, 2007. Přejít k původnímu zdroji...
  542. Hall G.S., Lonie D.P. The principle of equivalence and cosmological metrics. J. Math. Phys. 49, 022502, 1-13, 2008. Přejít k původnímu zdroji...
  543. Hall G.S., Lonie D.P. Projective equivalence of Einstein spaces in general relativity. Classical Quantum Gravity 26:12, Article ID 125009, 10p. 2009. Přejít k původnímu zdroji...
  544. Hamilton R.S. The Ricci flow on surfaces. Contemp. Math. 71, 237-261, 1988. Přejít k původnímu zdroji...
  545. Har'el Z. Projective mappings and distortion theorems. J.Diff.Geom. 15, 97-106, 1980. Přejít k původnímu zdroji...
  546. Hasegawa I., Yamauchi K. On infinitesimal holomorphically projective transformations in compact Kaehlerian manifolds, Hokkaido Math. J. 8, 214-219, 1979. Přejít k původnímu zdroji...
  547. Hasegawa I., Yamauchi K. Conformal-projective flatness of tangent bundle with complete lift statistical structure. Diff. Geom. and Dynamical Syst. 10, 148-158, 2008.
  548. Hashiguchi M. On Wagner's generalized Berwald space. J. Korean Math. Soc. 12, 51-61, 1975. Přejít k původnímu zdroji...
  549. Hashiguchi M., Ichijyo Y. Randers spaces with rectilinear geodesics. Rep. Fac. Sci., Kagoshima Univ., Math. Phys. Chem. 13, 33-40, 1980.
  550. Havas P. The range of application of the Lagrange formalism I. Nuovo Cimento Suppl. 3, 363-388, 1957. Přejít k původnímu zdroji...
  551. Hinterleitner F. A model detector for Hawking radiation from a Schwarzschild black hole. Fortschr. Phys. 43:3, 207-228, 1995. Přejít k původnímu zdroji...
  552. Hinterleitner F. Examples of separating coordinates for the Klein-Gordon equation in (2+1)-dimensional flat space-time. J. Math. Phys. 37:6, 3032-3040, 1996. Přejít k původnímu zdroji...
  553. Hinterleitner F. Local and global aspects of separating coordinates for the Klein-Gordon equation. Rend. Circ. Mat. Palermo (2), 46, 97-105, 1997.
  554. Hinterleitner F. Global properties of orthogonal separable coordinates for the Klein- Gordon equation in 2+1-dimensional flat space-time. Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 207, 133-171, 1999.
  555. Hinterleitner F. Killing tensors as space-time metrics. Ann. Phys., 271:1, 23-30, 1999. Přejít k původnímu zdroji...
  556. Hinterleitner F. A quantized closed Friedmann model. Classic. Quantum Gravity, 18:4, 739-751, 2001. Přejít k původnímu zdroji...
  557. Hinterleitner F. Quantum time evolution of a closed Friedmann model. Classic. Quantum Gravity, 19:5, 847-855, 2002. Přejít k původnímu zdroji...
  558. Hinterleitner I. Conformally-projective harmonic mappings of equidistant manifolds with the Friedmann models as example. Proc. 6th Int.Conf.Aplimat, 97-102, 2007. Přejít k původnímu zdroji...
  559. Hinterleitner I. Conformally-projective harmonic diffeomorphisms of equidistant manifolds. R. Soc. Mat. Esp. 11, 298-303, 2007. Přejít k původnímu zdroji...
  560. Hinterleitner I. Selected special vector fields and mappings in Riemannian geometry. J. Appl. Math. 1:2, 30-37, 2008.
  561. Hinterleitner I. Special mappings of equidistant spaces. J. Appl. Math. 2, 31-36, 2008.
  562. Hinterleitner I. Special vector fields on space with affine connection. 10th Int. Conf. Aplimat. Bratislava, 655-660, 2011.
  563. Hinterleitner I. On global geodesic mappings of ellipsoids. AIP Conf. Proc. 1460, 180-184, 2012. Přejít k původnímu zdroji...
  564. Hinterleitner I. On holomorphically projective mappings of e-Kähler manifolds. Arch. Mat. (Brno) 48, 333-338, 2012. Přejít k původnímu zdroji...
  565. Hinterleitner I. Geodesic mappings on compact Riemannian manifolds with conditions on sectional curvature. Publ. Inst. Math. 94(108), 125-130, 2013. Přejít k původnímu zdroji...
  566. Hinterleitner I. 4-planar mappings of quaternionic Kähler manifolds. Geometric methods in physics. Trends Math. 187-193, 2013. Přejít k původnímu zdroji...
  567. Hinterleitner I. Holomorphically projective mappings of (pseudo-) Kähler manifolds preserve the class of differentiability. Filomat, 30:11, 3115-3122, 2016. Přejít k původnímu zdroji...
  568. Hinterleitner I., Kiosak V.A. ϕRic-vector fields in Riemannian spaces. Arch. Math. Brno 44:5, 385-390, 2008.
  569. Hinterleitner I., Kiosak V.A. Special Einsteins equations on Kähler manifolds. Arch. Math., Brno 46:5, 333-337, 2010.
  570. Hinterleitner I., Mikeš J. F-subplanar mappings on spaces with affine connection. 5th Int. Conf. Aplimat. Bratislava, 63-68, 2006.
  571. Hinterleitner I., Mikeš J. On the equations of conformally-projective harmonic mappings. AIP Conf. Proc. 956, 141-148, 2007. Přejít k původnímu zdroji...
  572. Hinterleitner I., Mikeš J. On F-planar mappings of spaces with affine connections. Note Mat. 27:1, 111-118, 2007.
  573. Hinterleitner I., Mikeš J. Geodesic mappings onto Weyl manifolds. J. Appl. Math. 2:1, 125-133, 2009.
  574. Hinterleitner I., Mikeš J. Projective equivalence and spaces with equi-affine connection. J. Math. Sci. 177, 546-550, 2011. ⊲ Fundam. Prikl. Mat. 16, 47-54, 2010. Přejít k původnímu zdroji...
  575. Hinterleitner I., Mikeš J. Holomorphically projective mappings onto complete Kähler manifolds. Proc. XVI Geom. seminar, Univ. Niš, Serbia, 56-64, 2011.
  576. Hinterleitner I., Mikeš J. Geodesic mappings and Einstein spaces. Trends Math. 19, 331-335, 2013. Přejít k původnímu zdroji...
  577. Hinterleitner I., Mikeš J. Geodesic mappings of (pseudo-)Riemannian manifolds preserve class of differentiability. Miskolc Math. Notes 14:2, 575-582, 2013. Přejít k původnímu zdroji...
  578. Hinterleitner I., Mikeš J. On holomorphically projective mappings from manifolds with equiaffine connection onto Kähler manifolds. Archivum Math. 49:5, 295-302, 2013. Přejít k původnímu zdroji...
  579. Hinterleitner I., Mikeš J. Geodesic mappings and differentiability of metrics, affine and projective connections. Filomat, 29:6, 1245-1249, 2015. Přejít k původnímu zdroji...
  580. Hinterleitner I., Mikeš J. On the existence of pre-semigeodesic coordinates. arXiv:1512.00321
  581. Hinterleitner I., Mikeš J., Peška P. On F" 2 -planar mappings of (pseudo-) Riemannian manifolds. Arch. Math. Brno 50:5, 287-295, 2014. Přejít k původnímu zdroji...
  582. Hinterleitner I., Mikeš J., Peška P. Fundamental equations of F-planar mappings. Lobachevskii J. Math. 38:4, 653-659, 2017. Přejít k původnímu zdroji...
  583. Hinterleitner I., Mikeš J., Stepanova E. On Sinyukov's equations in their relation to a curvature operator of second kind. in Algebra, Geometry and Math. Physics, Springer Proc. 85, 489-494, 2014. Přejít k původnímu zdroji...
  584. Hinterleitner I., Mikeš J., Stránská J. Infinitesimal F-planar transformations. Russ. Math. 4, 13-18, 2008. ⊲ Izv. VUZ. Mat. 4, 16-22, 2008. Přejít k původnímu zdroji...
  585. Hinterleitner I., Mikeš J., Tsyganok I. On the rigidity of special holomorphically projective mappings. Proc. Contr. 7th Conf. Math. and Phys. Brno, 145-150, 2011.
  586. Hiramatu H. On Riemannian spaces admitting groups of conformal transformations. J. Math. Soc. Japan 9:1, 114-130, 1957. Přejít k původnímu zdroji...
  587. Hirică I.E. On geodesically related Riemannian spaces. (Romanian. English summary) Stud. Cercet. Mat. 49:1-2, 73-76, 1997. Přejít k původnímu zdroji...
  588. Hirică I.E. On geodesically related pseudo-Riemannian spaces. An. Ştiinţ. Univ. Al. I. Cuza I&acedil;si, Ser. Nouă, Mat. 43:2, 323-328, 1997.
  589. Hirică I.E. On geodesically and subgeodesically related pseudo-Riemann spaces. Rend. Semin. Mat. Messina, Ser. II 20:5, 99-107, 1998.
  590. Hirică I.E. Notes on subgeodesic and geodesic mappings of Riemannian manifolds. Bucharest: Geom. Balkan Press. BSG Proc. 3, 205-212, 1999.
  591. Houri T., Oota T., Yasui Y. Closed conformal Killing-Yano tensor and geodesic integrability. J. Phys. A, Math. Theor. 41:2, Article ID 025204, 12p., 2008. Přejít k původnímu zdroji...
  592. Hrdina J. Almost complex projective structures and their morphisms. Arch. Math., Brno 45, 255-264, 2009.
  593. Hrdina J., Slovák J. Morphisms of almost product projective geometries. Proc. 10th Int. Conf. DGA 2007, Olomouc. World Sci. 253-261, 2008. Přejít k původnímu zdroji...
  594. Hrdina J., Slovák J. Generalized planar curves and quaternionic geometry. Ann. Global Anal. Geom. 29:4, 349-360, 2006. Přejít k původnímu zdroji...
  595. Hrdina J., Vašík P. Generalized geodesics on almost Cliffordian geometries. Balkan J. Geom. Appl. 17:1, 41-48, 2012.
  596. Hubert E., Olver P.J. Differential invariants of conformal and projective surfaces. Symmetry, Integrability and Geometry: Methods and Appl. SIGMA 3, 097, 15p., 2007. Přejít k původnímu zdroji...
  597. Iscan M., Magde A. On B-manifolds defined by algebra of plural numbers. Arabian J. Sci. and Engin. 35, 57-63, 2010.
  598. Ishihara S. Holomorphically projective changes and their groups in an almost complex manifold. Tohoku Math. J. II. 9, 273-297, 1957. Přejít k původnímu zdroji...
  599. Ishihara S. Groups of projective transformations and groups of conformal transformations. J. Math. Soc. Japan 9, 195-227, 1957. Přejít k původnímu zdroji...
  600. Ishihara S., Tachibana S.-I. A note on holomorphically projective transformations of a Kählerian space with parallel Ricci tensor. Tohoku Math. J. II. 13, 193-200, 1961. Přejít k původnímu zdroji...
  601. IzumiH., Sakaguchi T. Identities in Finsler space. Mem.Natl.Def.Acad. 22, 7-15, 1982.
  602. Jakubowicz A. Über die Metrisierbarkeit der affin-zusammenhängenden Räume. Tensor 14, 132-137, 1963.
  603. Jakubowicz A. Über die Metrisierbarkeit der affin-zusammenhängenden Räume, II Teil. Tensor 17, 28-43, 1966.
  604. Jakubowicz A. Über die Metrisierbarkeit der vierdimensionalen affin-zusammenh ängenden Räume. Tensor 18, 259-270, 1967.
  605. Jeffreys H. An invariant form for the prior probability in estimation problems. Proc. of Royal Soc. A, 186, 453-461, 1946. Přejít k původnímu zdroji...
  606. Jezierski J., Lukasik M. Conformal Yano-Killing tensors in Einstein spacetimes. Rep. Math. Phys. 64:1-2, 205-221, 2009. Přejít k původnímu zdroji...
  607. Jukl M. Linear forms on free modules over certain local ring. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 32, 49-62, 1993.
  608. Jukl M. Inertial law of quadratic forms on modules over plural algebra. Math. Bohemica 120, 255-263, 1995. Přejít k původnímu zdroji...
  609. Jukl M. Grassman formula for certain type of modules. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 34, 69-74, 1995.
  610. Jukl M. Sylvester Theorem for certain free modules. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 35, 47-51, 1996.
  611. Jukl M. Inertial law of symplectic forms on modules over plural algebra. Math. Bohemica 122, 191-196, 1997. Přejít k původnímu zdroji...
  612. Jukl M. Canonical matrices of λ-bilinear forms on modules over a certain local ring. Disc. Math., Algebra and Stochastic Meth. 17, 9-17, 1997.
  613. Jukl M. Desargues Theorem for Klingenberg projective plane over certain local ring. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 36, 33-40, 1997.
  614. Jukl M. A remark on spaces over a special local ring. Math. Bohem. 123, 243-247, 1998. Přejít k původnímu zdroji...
  615. Jukl M. On homologies of Klingenberg projective spaces over special commutative local rings. Publ. Math. Debrec. 55, 113-121, 1999. Přejít k původnímu zdroji...
  616. Jukl M. Galois Triangle theory for direct summands of modules. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 39, 67-71, 2000.
  617. Jukl M. Galois triangle theory for certain free modules. Math. Slovaca 51, 557-565, 2000.
  618. Jukl M. On rings of endomorphisms of certain free modules. J. Appl. Math. 4:2, 205-216, 2011.
  619. Jukl M. On an application of the A-spaces over plural algebras in physics. J. Appl. Math. 4:2, 217-224, 2011.
  620. Jukl M. On some applications of certain local algebras in physics. Proc. Contr. 7th Conf. Math. and Phys. Brno, ISSN: 978-80-7231-818-6, 511-518, 2011.
  621. Jukl M., Juklová L., Mikeš J. The decomposition of tensor spaces with quaternionic structure. Proc. 6th Int. Conf. Aplimat, 217-222, 2007.
  622. Jukl M., Juklová L., Mikeš J. On generalized trace decompositions problems. In Tr. 3th Int. Conf. Funct. spaces etc. Moscow, MFTI, 299-314, 2008.
  623. Jukl M., Juklová L. On F-traceless decomposition problem. Proc. Contr. 7th Conf. Math. and Phys. Brno, ISSN: 978-80-7231-818-6, 215-223, 2011.
  624. Jukl M., Juklová L., Mikeš J. Multiple covariant derivative and decomposition problem. J. Appl. Math. Bratislava, 5:3, 97-104, 2012.
  625. Jukl M., Snášel V. Projective equivalence of quadrics in Klingenberg projective spaces over a special local ring. Int. Electr. J. Geometry 2, 34-38, 2009.
  626. Jung S.D., Richardson K. Transverse conformal Killing forms and a Gallot-Meyer theorem for foliations. Math. Z. 270:1-2, 337-350, 2012. Přejít k původnímu zdroji...
  627. Kähler E. Über eine bemerkenswerte Hermitesche Metrik. Sem. Hamburg. Univ. 9, 173-186, 1933. Přejít k původnímu zdroji...
  628. Kaigorodov V.R. Riemannian spaces *Ksn. Trudy Geometr. Sem. 5, 359-373, 1974.
  629. Kaigorodov V.R. The Riemannian spaces *Ds n. Second order recurrence. Izv. vuzov Mat. 153:2, 112-115, 1975.
  630. Kaigorodov V.R. The structure of the curvature of *Ds n-spaces of type B. Izv. vuzov Mat. 152:1, 104-107, 1975.
  631. Kalnins E.G., McLenaghan R.G., Williams G.C. Symmetry operators for Maxwells equations on curved space-time. Proc. R. Soc. Lond., Ser. A 439:1905, 103-113, 1992. Přejít k původnímu zdroji...
  632. Kamran, N., McLenaghan R.G. Symmetry operators for neutrino and Dirac fields on curved spacetime. Phys. Rev. D (3) 30:2, 357-362, 1984. Přejít k původnímu zdroji...
  633. Karmasina A.V., Kurbatova I.N. On some problems of geodesic mappings of almost Hermitian spaces. Ukr. NIINTI Kiev 458-Uk90, 14p. 1990.
  634. Kashiwada T. On conformal Killing tensor. Natur. Sci. Rep. Ochanomizu Univ. 19, 67-74, 1968.
  635. Katzin G.H., Levine J. Applications of Lie derivatives to symmetries, geodesic mappings and first integrals in Riemannian spaces. Colloq. math. 26, 21-38, 1972. Přejít k původnímu zdroji...
  636. Kervaire M.A. A manifold which does not admit any differentiable structure. Comment. Math. Helv. 34, 257-270, 1960. Přejít k původnímu zdroji...
  637. Kikuchi S. On the condition that a space with (alpha;, β)-metric be locally Minkowskian. Tensor, New Ser. 33, 242-246, 1979.
  638. Kinzerskaya N.N. On Kasner space geodesic mappings and deformations. Visn. Odes. Derzh. Univ., Ser. Fiz.-Mat. Nauky 4:4, 94-99, 1999.
  639. Kiosak V.A. On equidistant Riemannian spaces. Geom. obobshch. prostr., Penza, 60-65, 1992.
  640. Kiosak V.A. On equidistant pseudo-Riemannian spaces. Mat. Stud. 36:1, 21-25, 2011. Přejít k původnímu zdroji...
  641. Kiosak V.A., Haddad M. On A-harmonic spaces. In: Geom. obobshch. prostr., Penza, 41-45, 1992.
  642. Kiosak V.A., Matveev V.S. Proof of projective Lichnerowicz conjecture for pseudo- Riemannian metrics with degree of mobility greater than two. arXiv: 0810.0994, 2008.
  643. Kiosak V.A., Matveev V.S. Complete Einstein metrics are geodesically rigid. Comm. Math. Phys. 289:1, 383-400, 2009. Přejít k původnímu zdroji...
  644. Kiosak V., Matveev V.S. There are no conformal Einstein rescalings of complete pseudo-Riemannian Einstein metrics. C.R.Acad. Sci. 347:17-18, 1067-1069, 2009. Přejít k původnímu zdroji...
  645. Kiosak V.A., Matveev V.S., Mikeš J., Shandra I.G. On the degree of geodesic mobility for Riemannian netrics. Math. Notes 87:4, 586-587, 2010. ⊲ Mat. Zametki 87:4, 628-629, 2010. Přejít k původnímu zdroji...
  646. Kiosak V.A., Mikeš J. About the question of degree of movability of Riemannian spaces with respect to geodesic mappings. In: 8th Conf. Diff. Geom., Odessa, p. 68, 1984.
  647. Kiosak V.A., Mikeš J. On the degree of movability of Riemannian spaces in connection with geodesic maps. Geometry of imbedded manifolds, Interuniv. Collect. Sci. Works, 124, 35-39, 1986.
  648. Kiosak V.A., Mikeš J. Geodesic mappings and projective transformations of Riemannian spaces. Motions in generalized spaces, Interuniv. Collect. Sci. Works, 29-31, 1988.
  649. Kirik B. A study on Killing vector fields in four-dimensional spaces. Filomat 33:4, 2019. Přejít k původnímu zdroji...
  650. Kisil A.V. Isometric action of SL2(R) on homogeneous spaces. arXiv: 0810.0368v1 [math.MG] 2 Oct 2008.
  651. Klein J. Geometry of sprays. Lagrangian case. Principle of least curvature. Proc. IUTAM-ISIMMSymp. onModernDevelop. inAnal.Mech.Vol. I, Torino, 177-196, 1982.
  652. Klingenberg W. Desarguessche Ebenen mit Nachbarelement. Abh. Math. Sem. Univ. Hamburg. 20, 97-111, 1955. Přejít k původnímu zdroji...
  653. Klingenberg W. Projektive Geometrien mit Homomorphismus. Math. Annalen. 132, 180-200, 1956. Přejít k původnímu zdroji...
  654. Klishevich V.V., Tyumentsev V.A. On the solution of the Dirac equation in de Sitter space. Classical Quantum Gravity 22:20, 4263-4277, 2005. Přejít k původnímu zdroji...
  655. Klucký D. A contribution to the theory of modules over finite dimensional linear algebras. Časopis pro pěstování matem. 109, 113-117, 1984. Přejít k původnímu zdroji...
  656. Knebelman M.S. Conformal geometry of generalized metric spaces. Proc. USA Academy 15, 376-379, 1929. Přejít k původnímu zdroji...
  657. Knebelman M.S. Collineations and motions in generalized spaces. Amer. J. 51, 527-564, 1929. Přejít k původnímu zdroji...
  658. Knebelman M.J. Homothetic mappings of Riemannian spaces. Proc. AMS 9:6, 927-928, 1958. Přejít k původnímu zdroji...
  659. Kolář I. Weil bundles as generalized jet spaces. In Handbook of Global Analysis, Elsevier, 625-664, 2007. Přejít k původnímu zdroji...
  660. Kora M. On projective diffeomorphisms not necessarily preserving complex structure. Math. J. Okayama Univ. 19, 183-191, 1977.
  661. Kora M. On projective Killing tensor in a Riemannian manifold. Math. J. Okayama Univ. 21, 1-9, 1979.
  662. Kora M. On conformal Killing forms and the proper space of Δ for p-forms. Math. J. Okayama Univ. 22:2, 195-204, 1980.
  663. Kovalev P.I. Lie triple systems and affinely connected spaces. Math. Notes 14, 617-620, 1974. ⊲ Mat. Zametki 14, 107-112, 1973. Přejít k původnímu zdroji...
  664. Kowalski O. On regular curvature structures. Math. Z. 125, 129-138, 1972. Přejít k původnímu zdroji...
  665. Kowalski O. Metrizability of affine connections on analytic manifolds. Note Mat. 8:1, 1-11, 1988.
  666. Kowalski O., Sekizawa M. Pseudo-symmetric spaces of constant type in dimension three - elliptic spaces. Rend. Mat. Appl. VII. 17:3, 477-512, 1997.
  667. Kowalski O., Sekizawa M. Diagonalization of three-dimensional pseudo-Riemannian metrics. J. Geom. Phys. 74, 251-255, 2013. Přejít k původnímu zdroji...
  668. Kreuzer A. Free modules over Hjelmslev rings in which not every maximal linearly independent subset is a basis. J. Geom. 45, 105-113, 1992. Přejít k původnímu zdroji...
  669. Krtouš P., Frolov V., Kubizňák D. Hidden symmetries of higher-dimensional black holes and uniqueness of the Kerr-NUT-(A)dS spacetime. Phys. Rev. D, 78:6, 064022, pp. 6, 2008. Přejít k původnímu zdroji...
  670. Kruchkovich G.I. On a class of Riemannian spaces. Tr. Semin. Vektor. Tenzor. Anal. 11, 103-128, 1961.
  671. Kruchkovich G.I. Geodesic correspondence of semireducible Riemannian spaces. Sov. Math., Dokl. 4, 1240-1242, 1964. ⊲ Dokl. Akad. Nauk SSSR 152, 43-45, 1963.
  672. Kruchkovich G.I. On spaces V (K) and their geodesic mappings. Trudy Vsesoyuzn. Zaochn. Energ. Inst., Moscow, 33, 3-18, 1967.
  673. Krupka D. The trace decomposition problem. Beirtr. Alg. Geom. 36:2, 303-315, 1995.
  674. Krupka D. The trace decomposition of tensor spaces. Linear and Multilinear Algebra, 54:4, 235-263, 2006. Přejít k původnímu zdroji...
  675. Krýsl S. Classification of 1st order symplectic spinor operators over contact projective geometries. Differ. Geom. Appl. 26:5, 553-565, 2008. Přejít k původnímu zdroji...
  676. Kühnel W., Rademacher H.-B. Conformal diffeomorphisms preserving the Ricci tensor. Proc. AMS 123:9, 2841-2848, 1995. Přejít k původnímu zdroji...
  677. Kühnel W., Rademacher H.-B. Conformal diffeomorphisms preserving the Ricci tensor. Proc. Am. Math. Soc. 123:9, 2841-2848, 1995. Přejít k původnímu zdroji...
  678. Kühnel W., Rademacher H.-B. Conformal transformations of pseudo-Riemannian manifolds. Recent developments in pseudo-Riemannian geometry. Zürich: EMS. ESI Lect. in Math. and Phys. 261-298, 2008. Přejít k původnímu zdroji...
  679. Kühnel W., Rademacher H.-B. Einstein spaces with a conformal group. Result. Math. 56:1-4, 421-444, 2009. Přejít k původnímu zdroji...
  680. Kurbatova I.N. HP-mappings of H-spaces. Ukr. Geom. Sb. 27, 75-83, 1984.
  681. Kurbatova I.N. 4-quasi-planar mappings of almost quaternion manifolds. Sov. Math. 30, 100-104, 1986. ⊲ Izv. VUZ, Mat. 1, 75-78, 1986.
  682. Kureš M. Weil modules and gauge bundles. Acta Math. Sinica 22:1, 271-278, 2006. Přejít k původnímu zdroji...
  683. Kureš M., Mikulski W.M. Natural operators lifting 1-forms to bundles of Weil contact elements. Irish. Math. Soc. Bull. 49, 23-41, 2002. Přejít k původnímu zdroji...
  684. Kurose T. On the divergences of 1-conformally flat statistical manifolds, Tohoku Math. J. 46, 427-433, 1994. Přejít k původnímu zdroji...
  685. Kuzmina I., Chodorová M. The group of invertible elements of the algebra of quaternions. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 55:1, 53-58, 2016.
  686. Kuzmina I., Mikeš J. On pseudoconformal models of fibrations determined by the algebra of antiquaternions and projectivization of them. Ann. Math. Inform. 42, 57-64, 2013.
  687. Kuzmina I., Peška P. On the geometric singularities of surfaces of pseudo-Euclidean space. Int. Electron. J. Geom. 11:2, 104-110, 2018. Přejít k původnímu zdroji...
  688. Krys J., Metelka J. Symmetrische Kurven. (Czech) Cas. Pěst. Mat. 95, 7-22, 1970. Přejít k původnímu zdroji...
  689. Lagrange J.L. Essai d'une nouvelle methode pour determiner les maxima et les minima des formules integrales indefinies. Miscellanea Taurinensia 2, 325(1):173-199, 1760.
  690. Lakomá L., Jukl M. The decomposition of tensor spaces with almost complex structure. Suppl. Rend. Circ. Mat. Palermo, II. Ser. 72, 145-150, 2004.
  691. Lakomá L., Mikeš J. On the special trace decomposition problem on quaternionic structure. Proc. 3th Int. Workshop DGA, Sibiu, Romania, 225-229, 1997.
  692. Lakomá L., Mikeš J., Mikušová L. Decomposition of tensor spaces. Proc. Conf. DGA 98, Brno, MU, 371-378, 1999.
  693. al Lamy Raad J., Mikeš J., Škodová M. On linearly pF-planar mappings. Proc. 9th Int. Conf. DGA 04, Praha, 347-353, 2005.
  694. al Lamy Raad J., Škodová M., Mikeš J. On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces. Arch. Math. Brno 42:5, 291-299, 2006.
  695. Lee I.Y. On two-dimensional Landsberg space with a special (alpha;, β)-metric. J. Korea Soc. Math. Educ., Ser. B, Pure Appl. Math. 10:4, 279-288, 2003.
  696. Lee I.Y. Douglas spaces of the second kind of Finsler space with a Matsumoto metric. J. Chungcheong Math. Soc. 209-221, 2008.
  697. Lee I.Y. On Berwald space with an approximate infinite series (alpha;, β)-metric. Far East J. Math. Sci. (FJMS) 29:3, 701-710, 2008.
  698. Leiko S.G. Conservation laws for spin trajectories generated by isoperimetric extremals of rotation. Gravitation and Theory of Relativity, 26, 117-124, 1988.
  699. Leiko S.G. Rotary transformations of surfaces. Ukr. Geom. Sb. 34, 1990.
  700. Leiko S.G.Rotary diffeomorphisms on Euclidean spaces. Mat. Zametki 47:3, 52-57, 1990. Přejít k původnímu zdroji...
  701. Leiko S.G.Variational problems for rotation functionals, and spin-mappings of pseudo- Riemannian spaces. Sov. Math. 34:10, 9-18, 1990. ⊲ Izv. vuzov, Mat. 2, 9-17, 1990.
  702. Leiko S.G. Extremals of rotation functionals of curves in a pseudo-Riemannian space, and trajectories of spinning particles in gravitational fields. Russ. Acad. Sci., Dokl. Math. 46:1, 84-87, 1993. ⊲ Dokl. Ross. Akad. Nauk 325:4, 659-663, 1992.
  703. Leiko S.G. Infinitesimal rotational transformations and deformations of surfaces in Euclidean space. Dokl. Math. 52:2, 190-192, 1995.
  704. Leiko S.G. Isoperimetric extremals of a turn on surfaces in the Euclidean space E3. Russ. Math. 40:6, 22-29, 1996. ⊲ Izv. vuzov, Mat. 6, 25-32, 1996.
  705. Leiko S.G. On the conformal, concircular, and spin mappings of gravitational fields. J. Math. Sci. 90:2, 1941-1944, 1998. ⊲ Mat. Metody Fiz.-Mekh. Polya 40:2, 44-47, 1997. Přejít k původnímu zdroji...
  706. Leiko S.G. Isoperimetric problems for rotation functionals of the first and second orders in (pseudo) Riemannian manifolds. Russ. Math. 49:5, 45-51, 2005.
  707. Leiko S.G., Fedchenko Yu.S. Infinitesimal rotary deformations of surfaces and their application to the theory of elastic shells. Ukr. Math. J. 55:12, 2031-2040, 2003. Přejít k původnímu zdroji...
  708. Leiko S.G., al Hussin S. Rotary quasiconcircular diffeomorphisms on the (pseudo) Riemannian spaces. Mat. Metody Fiz.-Mekh. Polya 44:1, 22-27, 2001.
  709. Leiko S.G., Vinnik A.V. Rotational conformal transformations of the Lobachevskij plane. Russ. Math. 44:9, 77-79, 2000.
  710. Leitner F. Conformal Killing forms with normalisation condition. Circ. Mat. Palermo. Suppl. 75, 279-292, 2005.
  711. Levine J. Invariant characterization of two-dimensional affine and metric spaces. Duke Math. J. 14, 69-77, 1948. Přejít k původnímu zdroji...
  712. Li Benling. On some special projectively flat (alpha;, β)-metrics. Publ. Math. 71:3-4, 295-304, 2007. Přejít k původnímu zdroji...
  713. Li B., Shen Y., Shen Z. On a class of Douglas metrics. Stud. Sci. Math. Hung. 46:3, 355-365, 2009. Přejít k původnímu zdroji...
  714. Li B., Shen Z. On Randers metrics of quadratic Riemann curvature. Int. J. Math. 20:3, 369-376, 2009. Přejít k původnímu zdroji...
  715. Listing M. Conformal Einstein spaces in n-dimensions: Part II. J. Geom. Phys. 56, 386-404, 2006. Přejít k původnímu zdroji...
  716. Lück H.H. Projektive Hjelmslevräume. J. Reine Angew. Math. 243, 121-158, 1970. Přejít k původnímu zdroji...
  717. Luczyszyn D. On pseudosymmetric para-Kählerian manifolds. Beitr. Algebra Geom. 44:2, 551-558, 2003.
  718. Luczyszyn D., Olszak Z. On paraholomorphically pseudosymmetric para-Kählerian manifolds. J. Korean Math. Soc. 45:4, 953-963, 2008. Přejít k původnímu zdroji...
  719. Machala F. Über Automorphismen eines Annullatorenverbandes gewisser teilringe im Endomorphismenring eines homogenen vollstanding reduziblen Moduls. Acta Univ. Palacki. Olomuc, Fac. rer. nat. 41, 15-26, 1973.
  720. Machala F. Desarguessche Affine Ebenen mit Homomorphismus. Geom. Dedicata 3, 493-509, 1975. Přejít k původnímu zdroji...
  721. Maillot H. Sur les variétés riemanniennes é opérateur de courbure pur. C.R. Acad. Sci. Paris A378, 1127-1130, 1974.
  722. Masca I.M., Sabau V.S., Shimada H. Reversible geodesics for (alpha;, β)-metrics. Int. J. Math. 21:8, 1071-1094, 2010. Přejít k původnímu zdroji...
  723. Markov G., Prvanović M. π-holomorphically planar curves and π-holomorphically projective transformations. Publ. Math. 37:3-4, 273-284, 1990. Přejít k původnímu zdroji...
  724. Marková L. A contribution to the affine theory of curves. Acta Univ. Palacki. Olomuc., Fac. Rer. Nat. 30, 25-36, 1969.
  725. Matsumoto M. Projective changes of Finsler metrics and projectively flat Finsler spaces. Tensor, New Ser. 34, 303-315, 1980.
  726. Matsumoto M. Projectively flat Finsler spaces of dimension two. Finsler and Lagrange spaces, Proc. 5th Natl. Semin., Braov/Rom. 1988, 233-239, 1988.
  727. Matsumoto M. Every path space of dimension two is projectively related to a Finsler space. Open Syst. Inf. Dyn. 3:3, 291-303, 1995. Přejít k původnímu zdroji...
  728. Matsumoto M. Finsler spaces with (alpha;, β)-metric of Douglas type. Tensor, New Ser. 60:2, 123-134, 1998.
  729. Matveev V.S. Quadratically integrable geodesic flows on a torus and a Klein bottle. Regul. Khaoticheskaya Din. 2:1, 96-102, 1997.
  730. Matveev V.S. Geodesic flows on the Klein bottle, integrable by polynomials in momenta of degree four. Regul. Khaotich. Din. 2:2, 106-112, 1997.
  731. Matveev V.S. An example of a geodesic flow on a Klein bottle that is integrable by a polynomial of degree four in momenta. Mosc. Univ. Math. Bull. 52:4, 31-33, 1997.
  732. Matveev V.S. The asymptotic eigenfunctions of the operator ∇D(x, y)∇ corresponding to Liouville metrics and waves on water captured by bottom irregularities. Math. Notes 64:3, 357-363, 1998. ⊲ Mat. Zametki 64:3, 414-422, 1998. Přejít k původnímu zdroji...
  733. Matveev V.S. Quantum integrability of the Beltrami-Laplace operator for geodesically equivalent metrics. Dokl. Math. 61:2, 216-219, 2000.
  734. Matveev V.S. The Solodovnikov theorem in dimension two. Dokl. Math. 69:3, 338-340, 2004. ⊲ Dokl. Ross. Akad. Nauk 396:1, 25-27, 2004.
  735. Matveev V.S. Beltrami problem, Lichnerowich-Obata conjecture and applications of integrable systems in differentiable geometry. Tr. Semin. Vektorn. Tenzorn. Anal. 26, 214-237, 2005.
  736. Matveev V.S. The eigenvalues of the Sinyukov mapping for geodesically equivalent metrics are globally ordered. Math. Notes 77:3, 380-390, 2005. Přejít k původnímu zdroji...
  737. Matveev V.S. Riemannian metrics having common geodesics with Berwald metrics. Publ. Math. 74:3-4, 405-416, 2009. Přejít k původnímu zdroji...
  738. Matveev V., Rosemann S. Two remarks on PQ"-projectivity of Riemanninan metrics. Glasgow Math. J. 55:1, 131-138, 2013. Přejít k původnímu zdroji...
  739. Matveev V.S., Topalov P. Conjugate points of hyperbolic geodesics of square integrable geodesic flows on closed surfaces. Mosc. Univ. Math. Bull. 53:1, 39-41, 1998.
  740. Matveev V.S., Topalov P.I. Trajectory equivalence and corresponding integrals. Regul. Chaotic Dyn. 3:2, 30-45, 1998. Přejít k původnímu zdroji...
  741. Matveev V.S., Topalov P. A metric on a sphere that is geodesically equivalent to itself a metric of constant curvature is a metric of constant curvature. Mosc. Univ. Math. Bull. 53:5, 31-33, 1998. ⊲ Vestn. Mosk. Univ., Ser. I, 1998, No. 5, 53-55, 1998.
  742. Matveev V.S., Topalov P.I. Geodesic equivalence of metrics on surfaces, and their integrability. Dokl.Math. 60:1, 112-114, 1999. ⊲ Dokl.Ross.Akad.Nauk 367:6, 736- 738, 1999.
  743. Matveev V.S., Topalov P.I. Geodesic equivalence of metrics as a particular case of integrability of geodesic flows. Theor. Math. Phys. 123:2, 651-658, 2000. Přejít k původnímu zdroji...
  744. Matveev V.S., Topalov P.J. Dynamical and topological methods in the theory of geodesically equivalent metrics. J. Math. Sci. 113:4, 629-636, 2003. ⊲ Zap. Nauchn. Semin. POMI 266, 155-168, 2000. Přejít k původnímu zdroji...
  745. Metelka J. Sur certains systèmes linéaires surabondants de courb es planes. (French) Bull. Soc. R. Sci. Liège 16, 94-97, 1947.
  746. Meusnier J.B. Mémoire sur la courbure des surfaces. Mém. Mathém. Phys. Acad. Sci. Paris, 10, 477-510, 1785.
  747. Mikeš J. Geodesic mappings of semisymmetric Riemannian spaces. Odessk. Univ. Moscow: Archives at VINITI, No. 3924-76, 19p. 1976.
  748. Mikeš J. On geodesic mappings of semisymmetric Riemannian spaces. (in Czech) Zborník anotácií, Košice, p. 13, 1977.
  749. Mikeš J. On some classes of Riemannian spaces closed respectively to geodesic mappings. VII All-Union Conf. Modern Diff. Geom. Minsk, p. 126, 1979.
  750. Mikeš J. On geodesic mappings of 2-Ricci symmetric Riemannian spaces. Math. Notes 28, 622-624, 1981. ⊲ Mat. Zametki 28, 313-317, 1980. Přejít k původnímu zdroji...
  751. Mikeš J. On geodesic mappings of Einstein spaces. Math. Notes 28, 922-923, 1981. ⊲ Mat. Zametki 28, 935-938, 1980. Přejít k původnímu zdroji...
  752. Mikeš J. On holomorphically projective mappings of Kählerian spaces. Ukr. Geom. Sb. 23, 90-98, 1980.
  753. Mikeš J. Projective-symmetric and projective-recurrent affine connection spaces. Tr. Geom. Semin. 13, 61-62, 1981.
  754. Mikeš J. Equidistant Kähler spaces. Math. Notes 38:4, 855-858, 1985. ⊲ Mat. Zametki 38:4, 627-633, 1985. Přejít k původnímu zdroji...
  755. Mikeš J. On Sasaki spaces and equidistant Kähler spaces. Sov. Math. Dokl. 34, 428-431, 1987. ⊲ Dokl. Akad. Nauk SSSR 291, 33-36, 1986.
  756. Mikeš J. F-planar mappings and transformations. Differential geometry and its applications, Proc. Conf., Brno/Czech. 1986, Commun. 245-254, 1987.
  757. Mikeš J. Estimates of orders of groups of projective transformations of Riemannian spaces. Math. Notes 43:2, 145-148, 1988. ⊲ Mat. Zametki 43:2, 256-262, 1988. Přejít k původnímu zdroji...
  758. Mikeš J. On global concircular vector fields on compact Riemannian spaces. Archives at Ukr. NIINTI, No. 615-Uk88, 1988.
  759. Mikeš J. On an order of special transformation of Riemannian spaces. Differential geometry and its applications, Proc. Conf., Dubrovnik/Yugosl. 1988, 199-208, 1989.
  760. Mikeš J. On the existence of n-dimensional compact Riemannian spaces admitting nontrivial global projective transformations. Sov. Math., Dokl. 39, 315-317, 1989. ⊲ Dokl. Akad. Nauk SSSR 305, 534-536, 1989.
  761. Mikeš J. On existence of nontrivial global geodesic mappings on n-dimensional compact surfaces of revolution. DGA Conf., Brno, Czechosl., 1989. World Sci. 129-137, 1990.
  762. Mikeš J. F-planar mappings of spaces of affine connection. Arch. Math., Brno 27a, 53-56, 1991.
  763. Mikeš J. On geodesic and holomorphically projective mappings of generalized m-recurrent Riemannian spaces. Sib. Mat. Zh. 1-14, 1991.
  764. Mikeš J. On geodesic mappings of m-symmetric and generally semi-symmetric spaces. Russ. Math. 36:8, 38-42, 1992. ⊲ Izv. VUZ, Mat. 363:8, 42-46, 1992.
  765. Mikeš J. On geodesic and holomorphic-projective mappings of generalized m-recurrent Riemannian spaces. Sib. Mat. Zh. 33:5, 215, 1992.
  766. Mikeš J. Global geodesic mappings and their generalizations for compact Riemannian spaces. Diff. geometry and its appl. Proc. of the 5th Int. Conf., Opava, Czechosl., 1992. Opava: Open Education and Sci., Silesian Univ. Math. Publ. Opava. 1, 143-149, 1993.
  767. Mikeš J. Geodesic mappings onto semisymmetric spaces. Russ. Math. 38:2, 35-41, 1994. ⊲ Izv. VUZ, Mat. 381:2, 37-43, 1994.
  768. Mikeš J. Special F-planar mappings of affinely connected spaces onto Riemannian spaces. Mosc. Univ. Math. Bull. 49:3, 15-21, 1994. ⊲ Vestn. Mosk. Univ. 3, 18-24, 1994.
  769. Mikeš J. On the general trace decomposition problem. Diff. Geometry and Appl. Proc. of the 6th Int. Conf., Brno, Czech Republic, 1995. Brno: Masaryk Univ. 45-50, 1996.
  770. Mikeš J. F-planar mappings onto Riemannian spaces. Sb. trudov mezhd. nar. Conf.: Invariantnyje metody issledovanija na mnogoobrazijach struktur geometrii, analiza i matematieskoj fiziki, part 2, Moskovsk. Gos. Univ., VINITI, Moscow, 138-145, 2001.
  771. Mikeš J. On geodesic mappings onto Riemannian spaces. Res. Abstr. the First Int. Conf. of Math. in Al-Baath Univ. Homs/Syria, p. 19, 2008.
  772. Mikeš J., Bácsó S., Berezovski V. Geodesic mappings of weakly Berwald spaces and Berwald spaces onto Riemannian spaces. Int. J. Pure Appl. Math. 45:3, 413-418, 2008.
  773. Mikeš J., Bácsó S., Zedník J. On f-planar mappings of affine-connection spaces with infinite dimension. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 36, 157-162, 1997.
  774. Mikeš J., Berezovski V. Geodesic mappings of affinely connected spaces onto Riemannian spaces. Archives at Ukr. NIINTI, N. 1347-Uk85, 1985.
  775. Mikeš J., Berezovski V. Geodesic mappings of affine-connected spaces onto Riemannian spaces. Colloq. Math. Soc. J. Bolyai, 56. Diff. Geom., Eger, Hungary. Amsterdam: North-Holland, 491-494, 1989.
  776. Mikeš J., Berezovski V., Peška P., Rýparová L. On canonical F-planar mappings of spaces with affine connection. Filomat 33:4, 2019. Přejít k původnímu zdroji...
  777. Mikeš J., Chodorová M. Concircular vector fields on compact manifolds with affine connection. Publ. De la RSME 10, 302-307, 2007.
  778. Mikeš J., Chodorová M. A note to K-torse-forming vector fields on compact manifolds with complex structure. Acta Physica Debrecina, 42:1, 11-18, 2008.
  779. Mikeš J., Chodorová M. Geometrical properties of the special types of vector fields on compact manifolds. Proc. of the Int. Geometry Center, 1:1-2, 117-124, 2008.
  780. Mikeš J., Chodorová M. On concircular and torse-forming vector fields on compact manifolds. Acta Math. Acad. Paedagog. Nyházi. (N.S.) 26:2, 329-335, 2010.
  781. Mikeš J., Chudá H. First quadratic integral of geodesics with certain initial conditions. Abstr. Int. Conf. Geom. in Odessa, 147-149, 2007.
  782. Mikeš J., Chudá H. On geodesic mappings with certain initial conditions. Acta Math. Acad. Paedagog. Nyházi. (N.S.) 26:2, 337-341, 2010.
  783. Mikeš J., Chudá H. Conformally geodesic mappings satisfying a certain initial condition. Arch. Math., Brno 47:5, 389-394, 2011.
  784. Mikeš J., Chudá H., Hinterleitner I. Conformal holomorphically projective mappings of almost Hermitian manifolds with a certain initial condition. Int. J. Geom. Methods Mod. Phys. 11:5, 1450044, 8p. 2014. Přejít k původnímu zdroji...
  785. Mikeš J., Gavril'chenko M.L., Gladysheva E.I. Conformal mappings onto Einstein spaces. Proc. Kazan Univ. 1992.
  786. Mikeš J.,Gavril'chenkoM.L.,Gladysheva E.I. Conformal mappings onto Einstein spaces. Mosc.Univ.Math.Bull. 49:3, 10-14, 1994. ⊲Vestn.Mosk.Univ., Ser. 3, 13-17, 1994.
  787. Mikeš J., Hinterleitner I. On certain variational property of geodesics on Riemannian and Finslerian spaces. Vestnik Tver Univ., Ser. Prikl. mat. 64, 59-63, 2008.
  788. Mikeš J., Hinterleitner I. On geodesic mappings of manifolds with affine connection. Acta Math. Acad. Paedagog. Nyházi. 26:2, 343-347, 2010. arXiv:0905.1839v2.
  789. Mikeš J., Hinterleitner I., Kiosak V. On the theory of geodesic mappings of Einstein spaces and their generalizations. AIP Conf. Proc. 861, 428-435, 2006. Přejít k původnímu zdroji...
  790. Mikeš J., Hinterleitner I., Kiosak V. On geodesic mappings of spaces with affine connection. Acta Physica Debrecina, 42, 19-28, 2008.
  791. Mikeš J., Hinterleitner I., Vanžurová A. One remark on variational properties of geodesics in pseudoriemannian and generalized finsler spaces. 9th Int. Conf. On Geometry, Integrability and Quantization. June 8-13, 2007, Varna, Bulg. SOFTEX, Sofia, 261-264, 2008.
  792. Mikeš J., Kiosak V.A. On geodesic maps of four dimensional Einstein spaces. Odessk. Univ. Moscow: Archives at VINITI, 9.4.82, No. 1678-82, 19p. 1982.
  793. Mikeš J., Kiosak V.A. On geodesic mappings of special Riemannian spaces. Odessk. Univ. 1985. Archives at Ukr. NIINTI, Kiev, 5.5.85, No. 904-85, 1985.
  794. Mikeš J., Kiosak V.A. On geodesic maps of Einstein spaces. Russ. Math. 47:11, 32-37, 2003 ⊲ Izv. Vyssh. Uchebn. Zaved., Mat. 2003:11, 36-41, 2003.
  795. Mikeš J., Kiosak V.A., Sultanov A.Ya. On special projective vectors. In: Int. Sci. Work. Conf. of Young Scientists, Abstr. of Reports, Part III, Odessa 1987.
  796. Mikeš J., Laitochová J., Pokorná O. On some relations between curvature and metric tensors in Riemannian spaces. Suppl. Rend. Circ. Mat. Palermo, II. 63, 173-176, 2000.
  797. Mikeš J., Moldobaev Dz. On some algebraic properties of tensors. In: Issled. po Neevklid. Geom., Kirghyz. Univ., Frunze, 60-64, 1982.
  798. Mikeš J., Moldobaev Dz. On distribution of dimensions of conformal transformation groups of Riemannian spaces. Sov. Math. 35:12, 24-29, 1991. ⊲ Izv. Vyssh. Uchebn. Zaved., Mat. 355:12, 24-29, 1991.
  799. Mikeš J., Moldobaev Dz., Sabykanov A. On recurrent equiaffine projectively Euclidean spaces. In: Issled. po Topol. i Geometrii, Kirghyz. Univ., Bishkek, 46-52, 1991.
  800. Mikeš J., Peška P., Shiha M. On holomorphically-projective mapping of parabolic Kähler manifolds. ArXiv 15.
  801. Mikeš J., Peška P., Sabykanov A.A. Recurrent equiaffine projective Euclidean spaces. Filomat 33:4, 2019. Přejít k původnímu zdroji...
  802. Mikeš J., Pokas S.A. Lie-groups of second order transformations in associated Riemannian spaces. Odessk. Univ. 1981. Arch. at VINITI, 30.10.81, No. 4988-81, 1981.
  803. Mikeš J., Pokorná O. On holomorphically projective mappings onto almost Hermitian spaces. 8th Int. Conf. Opava, 43-48, 2001.
  804. Mikeš J., Pokorná O. On holomorphically projective mappings onto Kählerian spaces. Rend. Circ. Mat. Palermo, II. 69, 181-186, 2002. Přejít k původnímu zdroji...
  805. Mikeš J., Pokorná O., Starko G. Geodesic mappings between Kählerian spaces. Filomat, 16, 43-50, 2002. Přejít k původnímu zdroji...
  806. Mikeš J., Pokorná O., Starko G. On almost geodesic mappings π2e onto Riemannian spaces. Suppl. Rend. Circ. Mat. Palermo, II. Ser. 72, 151-157, 2004.
  807. Mikeš J., Pokorná O., Vavříková H. On almost geodesic mappings π2(e), e = ±1. Proc. Int. Conf. Aplimat, Bratislava, Part II, 315-321, 2005.
  808. Mikeš J., Rachůnek L. T-semisymmetric spaces and concircular vector fields. Suppl. Rend. Circ. Mat. Palermo, II. Ser. 69, 187-193, 2002.
  809. Mikeš J., Radulović Ž. Geodesic mappings of conformally Kählerian spaces. Russ. Math. 38:3, 48-50, 1994. ⊲ Izv. Vyssh. Uchebn. Zaved., Mat. 382:3, 50-52, 1994.
  810. Mikeš J., Radulović Ž. Concircular and torse-forming vector fields "on the whole". Math. Montisnigri 4, 43-54, 1995.
  811. Mikeš J., Radulović Ž. On geodesic and holomorphically projective mappings of generalized recurrent spaces. Publ. Inst. Math. 59(73), 153-160, 1996.
  812. Mikeš J., Radulović Ž. On projective transformations of Riemannian spaces with harmonic curvature. New developments in diff. geom., Budapest 1996. Kluwer Acad. Publ. 279-283, 1999. Přejít k původnímu zdroji...
  813. Mikeš J., Radulović Ž., Haddad M. Geodesic and holomorphically projective mappings of m-pseudo- and m-quasisymmetric Riemannian spaces. Russ. Math. 40:10, 28-32, 1996. ⊲ Izv. VUZ, Mat 413:10, 30-35, 1996.
  814. Mikeš J., Rýparová L., Chudá H. On theory of rotary mappings. Math. Notes 104:3-4, 617-620, 2018. ⊲ Mat. Zametki 104:4, 37-640, 2018. Přejít k původnímu zdroji...
  815. Mikeš J., Shiha M., Vanžurová A. Invariant objects by holomorhpically projective mappings of parabolically Kähler spaces. J. Appl. Math. 2:1, 135-141, 2009.
  816. Mikeš J., Sinyukov N.S. On quasiplanar mappings of spaces of affine connection. Sov. Math. 27:1, 63-70, 1983. ⊲ Izv. Vyssh. Uchebn. Zaved., Mat. 248:1, 55-61, 1983.
  817. Mikeš J., Sobchuk V.S. Geodesic mappings of 3-symmetric Riemannian spaces. J. Math. Sci. 69:1, 885-888, 1994. ⊲ Ukr. Geom. Sb. 34, 80-83, 1991. Přejít k původnímu zdroji...
  818. Mikeš J., Sochor M., Stepanova E. On the existence of isoperimetric extremals of rotation and the fundamental equations of rotary diffeomorphisms. Filomat 29:3, 517-523, 2015 Přejít k původnímu zdroji...
  819. Mikeš J., Starko G.A. Hyperbolically Sasakian and equidistant hyperbolically Kählerian spaces. J. Sov. Math. 59:2, 756-760, 1992. ⊲ Ukr. Geom. Sb. 32, 92-98, 1989. Přejít k původnímu zdroji...
  820. Mikeš J., Stepanov S. On generalized semisymmetric Riemannian manifolds. AAPP, Mat. e Nat. 91:2 Suppl. Art. number A1, 2013. DOI: 10.1478/AAPP.91S2A1 Přejít k původnímu zdroji...
  821. Mikeš J., Stepanov S., Hinterleitner I. Projective mappings and dimensions of vector spaces of three types of Killing-Yano tensors on pseudo Riemannian manifolds of constant curvature. AIP Conf. Proc. 1460, 202-205, 2012. Přejít k původnímu zdroji...
  822. Mikeš J., Stepanov S., Jukl M. The pre-Maxwell equations. Geometric methods in physics. Trends in Mathem. 377-381, 2013. Přejít k původnímu zdroji...
  823. Mikeš J., Stepanov S.E., Tsyganok I.I. On the Sampson Laplacian. Filomat 33:4, 2019. Přejít k původnímu zdroji...
  824. Mikeš J., Stepanova E. A five-dimensional Riemannian manifold with an irreducible SO(3)-structure as a model of abstract statistical manifold. Ann. Global Anal. Geom. 45:2, 111-128, 2014. Přejít k původnímu zdroji...
  825. Mikeš J., Strambach K. Differentiable structure on elementary geometries. Result. Math. 53:1-2, 153-172, 2009. Přejít k původnímu zdroji...
  826. Mikeš J., Strambach K. Grünwald shift spaces. Publ. Math. 83:1-2, 85-96, 2013. Přejít k původnímu zdroji...
  827. Mikeš J., Strambach K. Shells of monotone curves. Czechoslov. Math. J. 2015. Přejít k původnímu zdroji...
  828. Mikeš J., Škodová M. Concircular vector fields on compact manifolds with affine connections. Publ. De la RSME 11, 302-307, 2007.
  829. Mikeš J., Škodová M., al Lamy R.J. On holomorphically projective mappings from equiaffine special semisymmetric spaces. Proc. 5-th Int. Conf. Aplimat, Bratislava, II, 113-121, 2006.
  830. Mikeš J., Tolobaev O.S. Symmetric and projectively symmetric affinely connected spaces. Collect. Sci. Works, Frunze/Kyrgyzstan, 58-63, 1988.
  831. Mikeš J., Tsyganok I.I., Stepanova E.S. Estimates of the first eigenvalue of the Laplasian which acts on symmetric tensors. Proc. Int. Conf. Appl. Math. and Comp. Meth. in Eng. AMCME 14, Prague, 2014.
  832. Minčić S.M. On one problem of connections in the space of non-symmetric affine connection and its subspace. Filomat 33:4, 2019. Přejít k původnímu zdroji...
  833. Minčić S.M., Velimirović Lj.S. Academician Mileva Prvanović - the first doctor of geometrical sciences in Serbia. Filomat, 29:3, 375-380, 2015. Přejít k původnímu zdroji...
  834. Minčić S.M., Velimirović Lj.S., Stanković M.S. New integrability conditions of derivational equations of a submanifold in a generalized Riemannian space. Filomat 24:4, 137-146, 2010. Přejít k původnímu zdroji...
  835. Minčić S.M., Velimirović Lj.S., Stanković M.S. On spaces with non-symmetric affine connection, containing subspaces without torsion. Appl. Math. Comput. 219:9, 4346-4353, 2013. Přejít k původnímu zdroji...
  836. Minčić S.M., Velimirović Lj.S., Stanković M.S. Integrability conditions of derivational equations of a submanifold of a generalized Riemannian space. Appl. Math. Comput. 226:1, 3-9, 2014. Přejít k původnímu zdroji...
  837. Mocanu P. Espaces partiellement projectifs. Acad.RPR, StudiiCerc.Mat.6,495- 528,1955.
  838. Moldobaev D., Mikeš J. On some problems of the conformal transformations of Riemannian spaces. Diff. geometry and its appl., Proc. Conf., Brno/Czech. 1986, Commun., 255-256, 1987.
  839. Mo X. On the non-Riemannian quantity H of a Finsler metric. Differ. Geom. Appl. 27:1, 7-14, 2009. Přejít k původnímu zdroji...
  840. Mo X., Shen Z. On negatively curved Finsler manifolds of scalar curvature. Can. Math. Bull. 48:1, 112-120, 2005. Přejít k původnímu zdroji...
  841. Moor A. Über die Torsions- und Krümmungsinvarianten der dreidimensionalen Finslerschen Räume. (German) Math. Nachr. 16, 85-89, 1957. Přejít k původnímu zdroji...
  842. Munteanu G. Projective complex Finsler metrics. Period. Math. Hung. 48:1-2, 141-150, 2004. Přejít k původnímu zdroji...
  843. Muto Y. On some special Kahlerian spaces. Sci. Repts. Yokogama Nat. Univ. 1:8, 1-8, 1961.
  844. Nagy P.T., Strambach K. Loops as invariant sections in groups and their geometry. Canadian J. Math. 46, 1027-1056, 1994. Přejít k původnímu zdroji...
  845. Nagy P.T., Strambach K. Loops, their cores and symmetric spaces. Israel J. Math. 105, 285-322, 1998. Přejít k původnímu zdroji...
  846. Nagy P.T., Strambach K. Coverings of topological loops. J. Math. Sci. (N.Y.) 137, 5098-5116, 2006. Přejít k původnímu zdroji...
  847. Nagy P.T., Strambach K. Schreier loops. Czechoslovak Math. J. 58, 759-786, 2008. Přejít k původnímu zdroji...
  848. Nagy P.T., Strambach K. Transitive families of transformations. Moscow Math. J. 13, 667-691, 2013. Přejít k původnímu zdroji...
  849. Najafi B., Bidabad B., Tayebi A. On R-quadratic Finsler metrics. Iran. J. Sci. Technol., Trans. A, Sci. 31:4, 439-443, 2007.
  850. Najafi B., Shen Z., Tayebi A. On a projective class of Finsler metrics. Publ. Math. 70:1-2, 211-219, 2007. Přejít k původnímu zdroji...
  851. Najdanović M.S., Velimirović L.S. Second order infinitesimal bending of curves. Filomat 31, 4127-4137, 2017. Přejít k původnímu zdroji...
  852. Nash J. The imbedding problem for Riemannian manifolds. Ann. Math 63, 20-63, 1956. Přejít k původnímu zdroji...
  853. Negi D.S., Kala V.N. The study of projective motion in a Kaehlerian recurrent space. Acta Cienc. Indica, Math. 17:1, 149-154, 1991.
  854. Nomizu K., Pinkall U. On the geometry of projective immersions. J. Math. Soc. Japan 41:4, 607-623, 1989. Přejít k původnímu zdroji...
  855. Nore T. Second fundamental form of a map. Ann. Mat. Pura Appl., IV. Ser. 146, 281-310, 1987. Přejít k původnímu zdroji...
  856. Obata M. Riemannian manifolds admitting a solution of a certain system of differential equations. Proc. United States-Japan Semin. Diff. Geom., Kyoto 1965, 101-114, 1966.
  857. Nouhaud O. Déformations infinitesimales harmoniques remarquables. C. R. Acad. Sci. A 275, 1103-1105, 1972.
  858. Nouhaud O. Déformations infinitesimales harmoniques. C. R. Acad. Sci. A 275, 999-1001, 1972.
  859. Nouhaud O. Transformations infinitesimales harmoniques. C. R. Acad. Sci. A 274, 573-576, 1972.
  860. Nouhaud O. Applications et déformations projectives. C. R. Acad. Sci. A 280, 1531-1534, 1975.
  861. Nouhaud O. Déformations infinitesimales harmoniques. Rend. Mat. VI. 10, 87-108, 1977.
  862. Ogiue K., Tachibana S. Les variétés riemanniennes dont l'opérateur de courbure restreint est positif sont des sphères d'homologie réelle. C. R. Acad. Sci., Paris, Sér. A 289, 29-30, 1979.
  863. Nicolescu L. Les espaces de Riemann en representation subgeodesique. Tensor 32:2, 182-187, 1978.
  864. Nicolescu L. Sur la representation geodesique des espaces de Riemann. Ann. Univ. Bucuresti, Mat. 28, 69-74, 1979.
  865. Nicolescu L. Asupra spatilor pseudo-riemannienne in correspondenta geodezica. Lucr. coloc. nat. geom. si topol., Busteni, 1981. Bucuresti, 249-257, 1983.
  866. Nicolescu L. Sur la representation geodesique et subgeodesique des espaces de Riemann. Ann. Univ. Bucuresti Mat. 32, 57-63, 1983.
  867. Nicolescu L., Pripoae G.T. Gheorghe Vrănceanu - successor of Gheorghe Tzitzeica at the geometry chair of the University of Bucharest. Balkan J. Geom. Appl. 10:1, 11-20, 2005.
  868. Nomizu K. On hypersurfaces satisfying a certain condition on the curvature tensor. Tohoku Math. J. II, 20, 46-59, 1968. Přejít k původnímu zdroji...
  869. Nouhaud O. Applications deformations projectives. C.r. Acad. Sci. 280:22, A1531- A1534, 1975.
  870. Olszak Z. On compact holomorphically pseudosymmetric Kählerian manifolds. Cent. Eur. J. Math. 7:3, 442-451, 2009. Přejít k původnímu zdroji...
  871. Otsuki T., Tashiro Y. On curves in Kaehlerian spaces. Math. J. Okayama Univ. 4, 57-78, 1954.
  872. Park H.S., Lee I.Y. Landsberg spaces of dimension two with some (alpha;, β)-metrics. Panam. Math. J. 9:3, 41-56, 1999.
  873. Park H.S., Lee I.Y. On the Landsberg spaces of dimension two with a special (alpha;, β)metric. J. Korean Math. Soc. 37:1, 73-84, 2000.
  874. Park H.S., Lee I.Y. On Landsberg spaces of dimension two with a special (alpha;, β)-metric. Mem. Sec. tiin. Acad. Romana, Ser. IV 21 (1998), 27-36, 2001.
  875. Park H.S., Park H.Y., Kim B.D., Choi E.S. Projectively flat Finsler spaces with certain (alpha;, β)-metrics. Bull. Korean Math. Soc. 40:4, 649-661, 2003. Přejít k původnímu zdroji...
  876. Perez A., McCarthy J.M. Dual quaternionoc synthesis of a 2-TPR constrained parallel robot. Proc. of Workshop on Fund. Iss. and Future Research Direct. for Parallel Mechanisms and Manipulators. Quebec, 150-158, 2002.
  877. Petrov A.Z. On geodesic mappings of Einstein spaces. Izv. VUZ, Mat. 21, 130-136, 1961.
  878. Petrov A.Z. Modeling of the paths of test particles in gravitation theory. (Russian) Gravit. and the Theory of Relativity. 4-5, 7-21, 1968.
  879. Petrov A.Z. The classification of spaces defining gravitational fields. Gen. Relativ. Gravitation 32:8, 1665-1685, 2000. Přejít k původnímu zdroji...
  880. Petrović M.Z. Equitorsion holomorphically projective mappings of generalized m-parabolic Kähler manifolds. Filomat 33:4, 2019. Přejít k původnímu zdroji...
  881. Piliposyan V.A. On geodesic mappings of tangential stratifications of Riemannian manifolds with complete lift metrics (TM)cg. Tr. geom. semin., Kazan, 18, 69-89, 1988.
  882. Podestà F. Projective submersions. Bull. Aust. Math. Soc. 43:2, 251-256, 1991. Přejít k původnímu zdroji...
  883. Pokas' S.M. On a class of Riemannian spaces. Dep. VINITI, 1833-77, 1977.
  884. Pokas' S.M. Motions in associated Riemannian spaces. Dep. VINITI, 1347-80, 1980.
  885. Pogorelov A.V. On some theorem of Beltrami. DAN SSSR 316:2, 297-299, 1991.
  886. Popov A.G. Non-euclidean geometry and differential equations. Banach Cent. Publ. 33, 297-308, 1996. Přejít k původnímu zdroji...
  887. Popov A.G. Application of discrete nets on a hyperbolic plane in the integration of equations of the Lobachevski class. Comput. Math. Math. Phys. 39:6, 897-906, 1999. ⊲ Zh. Vychisl. Mat. Mat. Fiz. 39:6, 932-942, 1999.
  888. Poznyak E.G., Popov A.G. Lobachevsky geometry and the equations of mathematical physics. Russ. Acad. Sci., Dokl., Math. 48:2, 338-342, 1994. ⊲ Dokl. Ross. Akad. Nauk 332:4, 418-421, 1993.
  889. Poznyak E.G., Popov A.G. Lobachevskij geometry and physics. Russian Math. (Iz. VUZ) 38:3, 42-47, 1994 ⊲ Izv. Vyssh. Uchebn. Zaved. Mat. 3, 44-49, 1994.
  890. Poznyak E.G., Popov A.G. Geometry of the sine-Gordon equation. J. Math. Sci. 70:2, 1666-1684, 1994. Přejít k původnímu zdroji...
  891. Poznyak E.G., Popov A.G. Non-Euclidean geometry: The Gauss formula and an interpretation of partial differential equations. J. Math. Sci. 78:3, 241-252, 1996. Přejít k původnímu zdroji...
  892. Prvanović M. Projective and conformal transformations in recurrent and Ricci recurrent Riemannian spaces. Tensor 12:l3, 219-226, 1962.
  893. Prvanović M. Holomorphically projective transformations in a locally product space. Math. Balk. 1, 195-213, 1971.
  894. Prvanović M. Holomorphically semi-symmetric connexions. Zb. Rad., Prir.-Mat. Fak., Univ. Novom Sadu 9, 91-99, 1979.
  895. Prvanović M. A note on holomorphically projective transformations of the Kähler spaces. Tensor 35, 99-104, 1981.
  896. Prvanović M. Some special product semisymmetric and some special holomorphically semisymmetric F-connections. Publ. Inst. Math., Nouv. Sér. 35(49), 139-152, 1984.
  897. Rachůnek L., Mikeš J. On tensor fields semiconjugated with torse-forming vector fields. Acta UP Olomuc., Math. 44, 151-160, 2005.
  898. Radulovich Zh., Mikeš J. On geodesic and F-planar mappings of conformally Kählerian spaces. In: Abstr. Part 1. Inter. Sci. Conf. Lobachevsky and Contemp. Geometry. Kazan, August 13-22, 1992, Kazan Univ. Press, p. 81, 1992.
  899. Radulovich Zh., Mikeš J. Geodesic and holomorphically-projective mappings of conformally-Kählerian spaces. Opava: Silesian Univ. Math. Publ. 1, 151-156, 1993.
  900. Radulovich Zh., Mikeš J. Geodesic mappings of conformally Kählerian spaces. Russ. Math. 38:3, 48-50, 1994 ⊲ Izv. VUZ, Mat. 382:3, 50-52, 1994.
  901. Randall L., Sundrum R. An alternative to compactification. hepth/9906064.
  902. Randers G. On an asymmetrical metric in the four-space of general relativity. Phys. Rev., II. 59, 195-199, 1941. Přejít k původnímu zdroji...
  903. Rant W.H. Rings whose modules require an invariant number of minimal generators. Missouri J. Math. Sci. 13:1, 43-46, 2001. Přejít k původnímu zdroji...
  904. Rao C.R. Information and accuracy attainable in the estimation of statistical parameters, Bull. Calcuta Math. Soc. 37, 81-91, 1945.
  905. Rapcsák A. Metricus es affinösszefüggö pályaterek pályatarato leképe-zései. (Hung.) Magyar tud. akad. Mat. és fiz. tud. vszt. közl. 11:4, 339-369, 1961.
  906. Rapcsák A. Über die bahntreuen Abbildungen affinzusammenhängender Räume. Publ. Math. 8, 225-230, 1961. Přejít k původnímu zdroji...
  907. Rapcsák A. Über die bahntreuen Abbildungen metrischer Räume. Publ. Math. 8, 285-290, 1961. Přejít k původnímu zdroji...
  908. Rashevsky P.K. Scalar fields in fibered space. Tr. Sem. Vekt. Tens. Anal. 6, 225-248, 1948.
  909. Reynolds R.F., Thompson A.H. Projective-symmetric spaces. J.Austral.Math. Soc. 7, 1, 48-54, 1967. Přejít k původnímu zdroji...
  910. Ricci G., Levi-Civita T. Méthodes de calcul différentiel absolu et leurs applications. 1900. Mathematische Annalen, Springer, 54 (12): 125-201, doi:10.1007/BF01454201. Přejít k původnímu zdroji...
  911. Robinson J., Zund J. A theorem on geodesic mappings. Tensor 19, 300-302, 1968.
  912. Rosenfeld D.I. Geodesic correspondence of conformally-flat Riemannian spaces. Ukr. geom. sb. 6, 5-6; 139-146, 1968.
  913. Rosenfeld D.I., Gorbaty E.Z. On geodesic mappings of Riemannian spaces onto conformally flat Riemannian spaces. Ukr. geom. sb. 12, 115-124, 1972.
  914. Roter W. Sur l'application géodesique d'une variété riemanniene sur l'espace récurrent. Bull. Acad. polon. sci., Sér. sci. math. astron. et phys. 9:3, 147-194, 1961.
  915. Roter W. A note infinitesimal projective transformations in recurrent spaces of second order. Zesz. nauk. Politechn. Wrocl. 197, 87-94, 1968.
  916. Rovenski V. The weighted mixed curvature of a foliated manifold. Filomat 33:4, 2019. Přejít k původnímu zdroji...
  917. Ruse H.S. On simply harmonic spaces. J. London Math. Soc. 21, 243-247, 1946. Přejít k původnímu zdroji...
  918. Ruse H.S. Three-dimensional spaces of recurrent curvature. Proc. Lond. Math. Soc., II. 50, 438-446, 1948. Přejít k původnímu zdroji...
  919. Rýparová L., Křížek J., Mikeš J. On fundamental equations of rotary vector fields. Proc. 18th Conf. APLIMAT 2019, 1030-1034, 2019.
  920. Rýparová L., Mikeš J. On geodesic bifurcations. Geometry, Integrability and Quantization 18, 217-224, 2017. Přejít k původnímu zdroji...
  921. Rýparová L., Mikeš J. Bifurcation of closed geodesics. Geometry, Integrability and Quantization 19, 188-192, 2018. Přejít k původnímu zdroji...
  922. Rýparová L., Mikeš J. Infinitesimal rotary transformation. Filomat 33:4, 2019. Přejít k původnímu zdroji...
  923. Rýparová L., Mikeš J., Sabykanov A. On geodesic bifurcations of product spaces. J. Math. Sci. (New York) 239:1, 86-91, 2019. ⊲ Ukr. Mat. Visnyk 15:2, 264-271, 2018. Přejít k původnímu zdroji...
  924. Sadeghzadeh N., Rezaei B., Razavi A. Projective Einstein Finsler metric. Acta Math. Acad. Paed. Nyházi. 24:1, 125-133, 2008.
  925. Şahin B., Yanan Ş. Conformal semi-invariant Riemannian maps from almost Hermitian manifolds. Filomat 33:4, 2019. Přejít k původnímu zdroji...
  926. Sakaguchi T. On the holomorphically projective correspondence between Kählerian spaces preserwing complex structure. Hokkaido Math. J. 3:2, 203-212, 1974. Přejít k původnímu zdroji...
  927. Sakaguchi T. On Finsler spaces of scalar curvature. Tensor, 38, 211-219, 1982.
  928. Schmidt B.G. Conditions on a connection to be a metric connection. Commun. Math. Phys. 29, 55-59, 1973. Přejít k původnímu zdroji...
  929. Segre C. Le geometrie proiettive nei campi di numeri duali. Atti Accad. Sci. Torino 47, 114-133 et 164-185, 1911.
  930. Sampson J.H. On a theorem of Chern. Trans. AMS 177, 141-153, 1973. Přejít k původnímu zdroji...
  931. Semmelmann U. Conformal Killing forms on Riemannian manifolds. Math. Z. 245:3, 503-527, 2003. Přejít k původnímu zdroji...
  932. Shandra I.G. Spaces Vn(K) and Jordan algebra. Dedicated to the memory of Lobachevskij, Kazan, 1, 99-104, 1992.
  933. Shandra I.G. Geodesic mappings of equidistant spaces and Jordan algebras of spaces Vn(K). Diff. geom. mnogoobr. figur, Kaliningrad, 104-111, 1993.
  934. Shandra I.G. On concircular tensor fields and geodesic mappings of pseudo- Riemannian spaces. Russ. Math. 45:1, 52-62, 2001. ⊲ Izv. VUZ, Mat. 1, 55-66, 2001.
  935. Shapiro Ya.L. On geodesic fields of many-dimensional directions. Dokl. Akad. Nauk SSSR, 32:4, 237-239, 1941.
  936. Shapiro Ya.L. On a quasi-geodesic mapping. Sov. Math. 24:9, 63-67, 1980. ⊲ Izv. VUZ, Mat. 220:9, 53-55, 1980.
  937. Shapiro Ya.L., Igoshin V.A. Homomorphisms of quasi-geodesic flows. Sov. Math., Dokl. 21, 749-752, 1980. ⊲ Dokl. Akad. Nauk SSSR, 252, 303-306, 1980.
  938. Shapovalov V.N. Symmetry of Dirac-Fock equation. Sov. Phys. J. 18:6, 797-802, 1975. Přejít k původnímu zdroji...
  939. Shapovalov V.N., Shapovalova O.V. About a symmetry of the Dirac massless equation in a Riemannian space. Russ. Phys. J. 45:11, 1051-1065, 2002. Přejít k původnímu zdroji...
  940. Shen Z. On R-quadratic Finsler spaces. Publ. Math. 58:1-2, 263-274, 2001. Přejít k původnímu zdroji...
  941. Shen Z. On projectively related Einstein metrics in Riemann-Finsler geometry. Math. Ann. 320:4, 625-647, 2001. Přejít k původnímu zdroji...
  942. Shen Z. On projectively related randers metrics. Int. J. of Math. 19:5, 503-520, 2008. Přejít k původnímu zdroji...
  943. Shen Z. On a class of Landsberg metrics in Finsler geometry. Can. J. Math. 61:6, 1357-1374, 2009. Přejít k původnímu zdroji...
  944. Shen Z. On projectively flat(alpha;, β)-metrics. Can. Math. Bull. 52:1, 132-144, 2009. Přejít k původnímu zdroji...
  945. Shen Z. Open problems. 2009. http://www.Math.iupui.edu/zshen/Research/preprintindex.html.
  946. Shen Z., Civi Yildirim G. On a class of projectively flat metrics with constant flag curvature. Can. J. Math. 60:2, 443-456, 2008. Přejít k původnímu zdroji...
  947. Shibata C. On invariant tensors of β-changes of Finsler metrics. J. Math. Kyoto Univ. 24, 163-188, 1984. Přejít k původnímu zdroji...
  948. Shiha M. On the theory of holomorphically-projective mappings of parabolically- Kählerian spaces. DGA 1992, Math. Publ. 1, Silesian Univ. Opava, 157-160, 1993.
  949. Shiha M., Juklová L., Mikeš J. Holomorphically projective mappings onto Riemannian tangent-product spaces. J. Appl. Math. Bratislava, 5:3, 259-266, 2012.
  950. Shiha M., Mikeš J. The holomorphically projective mappings of parabolically Kählerian spaces. Dep. in UkrNIINTI, 1128-Uk91, 1991.
  951. Shiha M., Mikeš J. On equidistant, parabolically Kählerian spaces. Tr. Geom. Semin. 22, 97-107, 1994.
  952. Shiha M., Mikeš J. On holomorphically projective flat parabolically Kählerian spaces. Contemporary Geom. and Related Topics. Čigoja Publ. Comp. 250, 467-474, 2006.
  953. Shimada H., Sabău V.S. Finsler geometry. Finslerian geometries. Kluwer, Fundam. Theor. Phys. 109, 15-24, 2000. Přejít k původnímu zdroji...
  954. Shirokov A.P. On properties of covariant constant affinors. Dokl. Akad. Nauk SSSR, 102, 461-464, 1955.
  955. Shirokov P.A. Constant fields of vectors and tensors of second order on Riemannian spaces. Kazan, Učen. zap. Univ. 25:2, 256-280, 1925.
  956. Shirokov P.A. Projektive euklidian symmetric spaces. Tr. Sem. Vektor. Tenzor. Analizu 8, 73-81, 1950.
  957. Shoham M., Brodsky V. The dual inertia operator and its application to robot dynamics. J. Mech. Design. 116, 1089-1096, 1994. Přejít k původnímu zdroji...
  958. Shulikovskij V.I. Invariant criterium of Liouvill surfaces. Dokl. AN SSSR 94:1, 29-32, 1954. Přejít k původnímu zdroji...
  959. Simonescu C. Varietati Rieman in corepondenta geodezica definite pe un suport compact. Lucr. sti. Inst. politech. Brasov. Fac. mec. 5. 15-19, 1961.
  960. Sinyukov N.S. On geodesic mappings of Riemannian manifolds onto symmetric spaces. Dokl. Akad. Nauk SSSR 98, 21-23, 1954.
  961. Sinyukov N.S. Normal geodesic maps of Riemann spaces. Dokl. Akad. Nauk SSSR 111, 766-767 1956.
  962. Sinyukov N.S. On equidistant spaces. Vestn. Odessk. Univ., Odessa, 133-135, 1957.
  963. Sinyukov N.S. Normal geodesic mappings of Riemannian spaces. Dokl. Akad. Nauk SSSR 111, 766-767, 1956.
  964. Sinyukov N.S. An invariant transformation of Riemannian spaces with common geodesics. Sov. Math., Dokl. 2, 479-481, 1961. ⊲ Dokl. Akad. Nauk SSSR 137, 1312-1314, 1961.
  965. Sinyukov N.S. Almost geodesic mappings of affinely connected and Riemannian spaces. Sov. Math., Dokl. 4, 1086-1088, 1963. ⊲ Dokl. Akad. Nauk SSSR 151, 781-782, 1963.
  966. Sinyukov N.S. A contribution to the theory fo geodesic mapping of Riemannian spaces. Sov. Math., Dokl. 7, 1004-1006, 1966. ⊲ Dokl. Akad. Nauk SSSR 169, 770-772, 1966. Corr. 7:6, v-vi, 1966.
  967. Sinyukov N.S. Infinitely small almost geodesic transformations of affine connectivity spaces and Riemannian spaces, 1. Ukr. Geom. Sb. 9, 86-95, 1970.
  968. Sinyukov N.S. Almost-geodesic mappings of affinely-connected spaces and e-structures. Math. Notes 7, 272-278, 1970. Přejít k původnímu zdroji...
  969. Sinyukov N.S. Infinitesimal almost geodesic transformations of affinely connected and Riemannian spaces. II. Ukr. Geometr. Sb. 11, 87-95, 1971.
  970. Sinyukov N.S. Lie-groups of projective transformations of equidistant spaces. In abstract: IX All Union Conf. of Geom., Kishineu, 285-286, 1988.
  971. Sinyukov N.S. Principles of global theory of almost geodesic mappings of Riemannian spaces. Dep. in VINITI, No. 562-91B, 1991.
  972. Sinyukov N.S., Gavrilchenko M.L. Infinitesimal geodesic deformations of surfaces. Proc. Conf. Minsk, 1971.
  973. Sinyukov N.S., Mikeš J. On geodesic and holomorphically projective mappings of certain Riemannian spaces. Proc. 5th Baltic Geometr. Conf. Druskininkai, p. 78, 1978.
  974. Sinyukov N.S., Pokas' S.M. Groups of second degree motions in an associated Riemannian space. Dvizheniya v obobshchenn. prostranstvakh, Ryazan', 30-36, 1985.
  975. Sinyukov N.S., Sinyukova E.N. Holomorphically projective mappings of special Kähler spaces. Math. Notes 36, 706-709, 1984. ⊲ Mat. Zametki 36:3, 417-423, 1984. Přejít k původnímu zdroji...
  976. Sinyukov N.S., Sinyukova E.N. On geodesic mappings as a whole generally twice recurrent Riemannian spaces. In Proc. VII Baltic Conf. on Geom., Tallinn, 106-107, 1984.
  977. Sinyukov N.S., Sinyukova E.N., Movchan Yu.A. Some actual aspects of development of the theory of geodesic mappings of Riemannian spaces and its generalizations. Russ. Math. 38:3, 74-78, 1994. ⊲ Izv. Vyssh. Uchebn. Zaved., Mat. 382:3, 76-80, 1994.
  978. Sinyukova E.N. Geodesic mappings of certain special Riemannian spaces. Math. Notes 30, 946-949, 1982. ⊲ Mat. Zametki 30, 889-894, 1981. Přejít k původnímu zdroji...
  979. Sinyukova E.N. On global geodesic mappings of some special Riemannian spaces. Arch. VINITI 20.07.82, 3892-82, 15p. 1982.
  980. Sinyukova E.N. Geodesic mappings of Ln. Sov. Math. 26:3, 71-77, 1982. ⊲ Izv. vuzov, Math. 3, 57-61, 1982.
  981. Sinyukova E.N. Hopf-Bochner-Yano method in the theory of geodesic and holomorphically projective mappings. Ph.D. Thesis, Minsk, 1988.
  982. Sinyukova E.N. Geodesic uniqueness in the large of some generalized recurrent Riemannian spaces. J. Math. Sci. 177:5, 710-715, 2011. ⊲ Fundam. Prikl. Mat. 16:2, 93-101, 2010. Přejít k původnímu zdroji...
  983. Sinyukova E.N., Sinyukov N.S. Infinitesimally small F-planar deformations of the metrics of Riemann spaces. USSR Conf. Geom. & Analysis, Novosiborsk, p. 75, 1989.
  984. Smaranda D. On projective transformations with a recurrent projective tensor field. Lucr. coloc. nat. geom. si topol. Busteni, 27-30 iun., 1981. Bucuresti. 323-329, 1983.
  985. Sobchuk V.S. On geodesic mapping of generalized Ricci symmetric Riemannian manifolds. Černovci, 1981.
  986. Sobchuk V.S. Ricci generalized symmetric Riemannian spaces admit nontrivial geodesic mappings. Sov. Math., Dokl. 26, 699-701, 1982. ⊲ Dokl. Akad. Nauk SSSR 267, 793-795, 1982.
  987. Sobchuk V.S. Geodesic mappings of certain classes of Riemannian spaces. Sov. Math. 34:4, 56-59, 1990. ⊲ Izv. VUZ, Mat. 4, 48-50, 1990.
  988. Sobchuk V.S. On the Ricci geodesic mapping of 4-symmetric Riemannian spaces. Sov. Math. 35:4, 68-69, 1991. ⊲ Izv. Vyssh. Uchebn. Zaved., Mat. 4, 69-70, 1991.
  989. Sobchuk V.S. On geodesic mappings of projective 2-recurrence Riemannian spaces. Ukr. Mat. Stud. 5, 53-56, 1995.
  990. Sobchuk V.S. Projectively 2-recurrent Riemann spaces. (Ukrainian. English summary) Nauk. Visn. Chernivets'kogo Univ., Mat. 46, 107-108, 1999.
  991. Sobchuk V.S., Mikeš J., Pokorná O. On almost geodesic mappings π2 between semisymmetric Riemannian spaces. Novi Sad J. Math. 29:3, 309-312, 1999.
  992. Solodovnikov A.S. Projektive transformation of Riemannian spaces. Dokl. Akad. Nauk SSSR 105, 419-422, 1955.
  993. Solodovnikov A.S. On spaces with common geodesics. Dokl. Akad. Nauk SSSR 108, 201-203, 1956.
  994. Solodovnikov A.S. Geodesic classes of V (K) spaces. Dokl. Akad. Nauk SSSR 111, 33-36, 1956.
  995. Solodovnikov A.S. Group of Projective transformations in a complete analytic Riemannian space. Dokl. AN SSSR 186:6, 1262-1265, 1969.
  996. Soos Gy. Über die geodätischen Abbildungen von Riemannschen Räumen auf projectiv symmetrische Riemannschen Räumen. Acta Math. Acad. Sci. Hung. 9, 359-361, 1958. Přejít k původnímu zdroji...
  997. Sosov E.N. Geodesic mappings of special metric spaces. Russ. Math. 41:8, 43-45, 1997. ⊲ Izv. Vyssh. Uchebn. Zaved., Mat. 8, 46-49, 1997.
  998. Stanković M.S. Second type almost geodesic mappings of special class and their invariants. Filomat 33:4, 2019. Přejít k původnímu zdroji...
  999. Stanković M.S., Minčić S.M. New special geodesic mappings of generalized Riemannian spaces. Publ. Inst. Math., Nouv. Sér. 67(81), 92-102, 2000.
  1000. Stanković M.S., Minčič S.M., Velimirović L.S. On equitorsion holomorphically projective mappings of generalized Kählerian spaces. Czech. Math. J. 54:3, 701-715, 2004. Přejít k původnímu zdroji...
  1001. Stanković M.S., Zlatanovič L.S., Velimirović L.S. Equitorsion holomorphically projective mappings of generalized Kählerian space of the first kind. Czech. Math. J. 60, 635-653, 2010. Přejít k původnímu zdroji...
  1002. Stanković M.S., Zlatanovič L.S., Velimirović L.S. Equitorsion holomorphically projective mappings of generalized Kahlerian space of the second kind. Int. Electr. J. Geom. 3:2, 26-39, 2010. Přejít k původnímu zdroji...
  1003. Stepanov S.E. One class of Riemannian almost-product structures. Sov. Math. 33:7, 51-59, 1989. ⊲ Izv. vuzov, Mat. 7, 40-46, 1989.
  1004. Stepanov S.E. On the global theory of some classes of mappings. Ann. Global Anal. Geom. 13:3, 239-249, 1995. Přejít k původnímu zdroji...
  1005. Stepanov S.E. On the global theory of projective mappings. Math. Notes 58:1, 752-756, 1995. ⊲ Mat. Zametki 58:1, 111-118, 1995. Přejít k původnímu zdroji...
  1006. Stepanov S.E. O(m)×O(m-n)-structures on m-dimensional manifolds, and submersions of Riemannian manifolds. St. Petersbg. Math. J. 7:6, 1005-1016, 1996. ⊲ Algebra Anal. 7:6, 188-204, 1995.
  1007. Stepanov S.E. On a group approach to studying the Einstein and Maxwell equations. Theor. Math. Phys. 111:1, 419-427, 1997. Přejít k původnímu zdroji...
  1008. Stepanov S.E. Geometry of projective submersions of Riemannian manifolds. Russ. Math. 43:9, 44-50, 1999. ⊲ Izv. vuzov, Mat. 9, 48-54, 1999.
  1009. Stepanov S.E. On conformal Killing 2-form of the electromagnetic field. J. Geom. Phys. 33:3-4, 191-209, 2000. Přejít k původnímu zdroji...
  1010. Stepanov S.E. The Killing-Yano tensor. Theor. Math. Phys. 134:3, 333-338, 2003. ⊲ Teor. Mat. Fiz. 134:3, 382-387, 2003. Přejít k původnímu zdroji...
  1011. Stepanov S.E., Jukl M., Mikeš J. On dimensions of vector spaces of conformal Killing forms. in Algebra, Geometry and Math. Physics, 495-507, Springer, 2014. Přejít k původnímu zdroji...
  1012. Stepanov S.E., Jukl M., Mikeš J. Vanishing theorems of conformal Killing forms and their applications to electrodynamics in the general relativity theory. Int. J. Geom. Methods Mod. Phys. 11:9, Article ID 1450039, 8p. 2014. Přejít k původnímu zdroji...
  1013. Stepanov S.E., Mikeš J. Seven invariant classes of the Einstein equations and projective mappings. Conf. Proc. AIP, 1460, 221-225, 2012. Přejít k původnímu zdroji...
  1014. Stepanov S.E., Mikeš J. Betti and Tachibana numbers of compact Riemannian manifolds. Diff. Geom. Appl. 31:4, 486-495, 2013. Přejít k původnímu zdroji...
  1015. Stepanov S.E., Mikeš J. The Hodge-de Rham Laplacian and Tachibana operator on a compact Riemannian manifold with curvature operator of definite sign. Izv. Math. 79:2, 167180, 2015. ⊲ Izv. RAN. Ser. Mat., 79:2, 167-180, 2015. Přejít k původnímu zdroji...
  1016. Stepanov S.E., Smolnikova M.V. On a differential operator of K. Yano. Abst. Int. Conf. on Diff. Eq. and Dynam. System, Suzdal. Vladimir State Univ., Vladimir, 129-131, 2002.
  1017. Stepanov S.E., Shandra I.G. Seven classes of harmonic diffeomorphisms. Math. Notes 74:5, 708-716, 2003. ⊲ Mat. Zametki 74:5, 752-761, 2003. Přejít k původnímu zdroji...
  1018. Stepanov S.E., Shandra I.G. Geometry of infinitesimal harmonic transformations. Ann. Global Anal. Geom. 24:3, 291299, 2003. Přejít k původnímu zdroji...
  1019. Stepanov S.E., Stepanova E.S., Shandra I.G. Conjugate connections on statistical manifolds. Russ. Math. 51:10, 89-96, 2007. ⊲ Izvuz, Mat. 10, 90-98, 2007. Přejít k původnímu zdroji...
  1020. Stepanov S.E., Tsyganok I.I., Mikeš J. From infinitesimal harmonic transformations to Ricci solitons. Math. Bohem. 138:1, 25-36, 2013. Přejít k původnímu zdroji...
  1021. Stepanova E.S. Dual symmetric statistical manifolds. J. Math. Sci. 147, 6507-6509, 2007. Přejít k původnímu zdroji...
  1022. Stepanova E.S., Chodorová M. On the degree of geodesic mobility of Riemannian manifolds. Miskolc Math. Notes, 14:2, 609-612, 2013. Přejít k původnímu zdroji...
  1023. Stepanova E.S., Mikeš J., Tsyganok I.I. A geodesic mapping and its field of symmetric linear endomorphisms. Diff. Geom. Appl. 35 suppl., 44-49, 2014. Přejít k původnímu zdroji...
  1024. Stepanova E.S., Stepanov S.E., Shandra I.G. Conjugate connections on statistical manifolds. Russ. Math. J. 51, 89-94, 2007. Přejít k původnímu zdroji...
  1025. Stepanova E.S., Tsyganok I.I. An example of a statistical manifold. Differ. Geom. Mnogoobr. Figur 39, 135-140, 2008.
  1026. Szabó Z.I. Ein Finslerscher Raum ist gerade dann von skalarer Krümmung, wenn seine Weylsche Projektivkrümmung verschwindet. Acta Sci. Math. 39, 163-168, 1977.
  1027. Szabó Z.I. Positive definite Berwald spaces. Tensor, 35, 25-39, 1981.
  1028. Szabó Z.I. Berwald metrics constructed by Chevalley's polinomials. arXiv: math/0601522, 2006.
  1029. Szabó Z.I. Correction to All regular Landsberg metrics are Berwald. Ann. Global Anal. Geom. 35:3, 227-230, 2009. Přejít k původnímu zdroji...
  1030. Szabó Z.I., Zoltán I. All regular Landsberg metrics are Berwald. Ann. Global Anal. Geom. 34:4, 381-386, 2008. Přejít k původnímu zdroji...
  1031. Škodová M., Mikeš J. Concircular and convergent vector fields on compact spaces with affine connections. Proc. of the 6th Int. Conf. Aplimat, 237-242, 2007.
  1032. Škodová M., Mikeš J., Pokorná O. On holomorphically projective mappings from equiaffine symmetric and recurrent spaces onto Kählerian spaces. Rend. Circ. Matem. di Palermo. Ser. II, Suppl. 75, 309-316, 2005.
  1033. Tachibana S.-i. On conformal Killing tensor in a Riemannian space. Tohoku Math. J., II. 21, 56-64, 1969. Přejít k původnímu zdroji...
  1034. Tachibana S.-I., Ishihara S. On infinitesimal holomorphically projective transformations in Kählerian manifolds. Tohoku Math. J. 12, 77-101, 1960.. Přejít k původnímu zdroji...
  1035. Takeuchi J., Amari S. α-parallel prior and its properties. IEEE Trans. Inf. Theory 51:3, 1011-1023, 2005. Přejít k původnímu zdroji...
  1036. Takeno H., Ikeda M. Theory of the spherically symmetric spaces-times. VII. Spacetimes with corresponding geodesics. J. Sci. Hiroshima Univ. A17:1, 75-81, 1953. Přejít k původnímu zdroji...
  1037. Tamássy L. Finsler geometry in the tangent bundle. Adv. Stud. Pure Math. 48, 163-194, 2007. Přejít k původnímu zdroji...
  1038. Tanno S. Some differential equations on Riemannian manifolds. J. Math. Soc. Japan 30, 509-531, 1978. Přejít k původnímu zdroji...
  1039. Tanno S. On projective transformations of Riemannian manifolds. Geom. and its appl., World Sci. 225-231, 1993.
  1040. Taub A. A characterizion of conformally flat spaces, Bull. AMS 55:2, 85-89, 1949. Přejít k původnímu zdroji...
  1041. Thielhelm H., Vais A., Wolter F.-E. Geodesic bifurcation on smooth surfaces. The Visual Computer, 31, 187-204, 2015. Přejít k původnímu zdroji...
  1042. Thomas J.M. Asymmetric displacement of a vector. Trans. AMS 28:4, 658-670, 1926. Přejít k původnímu zdroji...
  1043. Thomas T.Y. On projective and equiprojective geometries of paths. PWC. Nat. Acad. Sci. USA, 11, 198-203, 1925. Přejít k původnímu zdroji...
  1044. Thomas T.Y. Note on the projective geometry of paths. Bull. AMS 31, 318-322, 1925. Přejít k původnímu zdroji...
  1045. Thomas T.Y. Determination of affine and metric spaces by their differential invariants. Math. Ann. 101, 713-728, 1929. Přejít k původnímu zdroji...
  1046. Thompson G. Local and global existence of metrics in two-dimensional affine manifolds. Chinese J. Phys. 19:6, 529-532, 1991.
  1047. Topalov P. Geodesic compatibility and integrability of geodesic flows. J. Math. Phys. 44:2, 913-929, 2003. Přejít k původnímu zdroji...
  1048. Tsyganok I.I. Torse-forming vector field and group of affine homotheties. Webs and quazigoups, Kalinin, 114-119, 1988.
  1049. Tsyganok I.I., Stepanova E.S. Integrals of equation of geodesic lines in the Chentsov- Amary connection. Differ. Geom. Mnogoobr. Figur 40, 144-148, 2009.
  1050. Tyc T., Rowe D.J., Sanders B.C. Efficient sharing of a continuous-variable quantum secret. J. Phys. A, Math. Gen. 36:27, 7625-7637, 2003. Přejít k původnímu zdroji...
  1051. Vanžurová A. Linear connections on two-manifolds and SODEs. Proc. Int. Conf. Aplimat, Part II, 325-332, 2007
  1052. Vanžurová A. Metrization problem for linear connections and holonomy algebras. Arch. Math. Brno 44:5, 339-349, 2008.
  1053. Vanžurová A. Metrization of linear connections, holonomy groups and holonomy algebras. Acta Phys. Debrecina 42, 39-48, 2008.
  1054. Vanžurová A. Metrization of connections with regular curvature. Arch. Math. Brno 45:4, 325-333, 2009.
  1055. Vanžurová A. On metrizability of locally homogeneous affine connections on 2dimensional manifolds. Arch. Math. Brno 49:5, 199-209, 2013. Přejít k původnímu zdroji...
  1056. Vanžurová A. On metrizability of a class of 2-manifolds with linear connection. Miskolc Math. Notes 14:3, 311-317, 2013. Přejít k původnímu zdroji...
  1057. Vanžurová A., Doležalová J. Hexagonal quasigroups over finite fields. Proc. Contr. 7th Conf. Math. and Phys. Brno, ISSN: 978-80-7231-818-6, 459-467, 2011.
  1058. Vanžurová A., Jukl M. Parallelogram spaces and medial quasigroups. J. Appl. Math. Bratislava, 5:3, 133-140, 2012.
  1059. Vanžurová A., Žáčková P. Metrizability of connections on two-manifolds. Acta UP Olomouc, Mathem. 2009.
  1060. Vanžurová A., Žáčková P. Metrization of linear connections. J. Appl. Math. Bratisl. 2:1, 151-163, 2009.
  1061. Vanžurová A., Žáčková P. Metrization of linear connections. Proc. 8th Int. Conf. Aplimat, 453-464, 2009.
  1062. Vavříková H., Mikeš J., Pokorná O., Starko G. On fundamental equations of almost geodesic mappings of type π2(e). Russ. Math. 51:1, 8-12, 2007. ⊲ Izv. Vyssh. Uchebn. Zaved., Mat. 1, 10-15, 2007. Přejít k původnímu zdroji...
  1063. Veldkamp F.D. Projective planes over rings of stable rank 2. Geom. Dedicata 11, 285-308, 1981. Přejít k původnímu zdroji...
  1064. Veldkamp F.D. Projective Barbilian spaces. Res. Math. 12, 434-449, 1987. Přejít k původnímu zdroji...
  1065. Veldkamp F.D. Geometry over rings. In Handbook of incidence geometry. Elsevier, 1033-1085, 1994. Přejít k původnímu zdroji...
  1066. Velimirović A., Zlatanović M. On semisymmetric connection. Filomat 33:4, 2019. Přejít k původnímu zdroji...
  1067. Velimirović L.S., Ćirić M.S., Cvetković M.D. Change of the Willmore energy under infinitesimal bending of membranes. Comp. Math. Appl. 59, 3679-3686, 2010. Přejít k původnímu zdroji...
  1068. Velimirović L.S., Ćirić M.S., Velimirović N.M. On the Willmore energy of shells under infinitesimal deformations. Appl. Math. Comput. 61:11, 3181-3190, 2011. Přejít k původnímu zdroji...
  1069. Velimirović L.S., Ćirić M.S., Velimirović N.M. Analysis of Gaudi surfaces at small deformations. Appl. Math. Comput. 218:13, 6999-7004, 2012. Přejít k původnímu zdroji...
  1070. Velimirović L.S., Cvetković M.D., Najdanović M.S., Velimirović N.M. Variation of shape operator under infinitesimal bending of surface. Appl. Math. Comput. 225, 480-486, 2013. Přejít k původnímu zdroji...
  1071. Velimirović L.S., Minčič S.M., Stanković M.S. Infinitesimal deformations of curvature tensors at non-symmetric affine connection space. Matematicki Vesnik 54, 219-226, 2002.
  1072. Velimirović L.S., Minčič S.M., Stanković M.S. Infinitesimal rigidity and flexibility of a non-symmetric affine connection space. European J. Combinat. 34, 1148-1159, 2010. Přejít k původnímu zdroji...
  1073. Velimirović L.S., Minčič S.M. Infinitesimal bending of a subspace of a generalized Riemannian space. Tensor 65:3, 212-224, 2004.
  1074. Velimirović L.S., Minčič S.M., Stanković M.S. Infinitesimal deformations and Lie derivative of a non-symmetric affine connection space. Acta UP Olomouc, Mathem. 42, 111-121, 2003. Přejít k původnímu zdroji...
  1075. Velimirović L.S., Minčič S.M., Stanković M.S. On commutativity of the Lie derivative and covariant derivative at a non-symmetric affine connection space. Contemporary geom. and related topics. River Edge, NJ: World Sci. 425-430, 2004. Přejít k původnímu zdroji...
  1076. Velimirović L.S., Rančić S.R. Notes on infinitesimal bending of a toroid formed by revolution of a polygonal meridian. J. Geometry and Graph. 13, 177-186, 2009.
  1077. Venzi P. On geodesic mapping in Riemannian and pseudo-Riemannian manifolds. Tensor 32, 193-198, 1978.
  1078. Venzi P. Geodätische abbildungen in Riemanscher mannigfaltigkeiten. Tensor 33, 313-321, 1979.
  1079. Venzi P. On concircular mapping in Riemannian and pseudo-Riemannian manifolds with symmetry conditions. Tensor 33, 109-113, 1979.
  1080. Venzi P. On geodesic mappings in Riemannian and pseudo-Riemannian manifolds. Tensor 33, 23-28, 1979.
  1081. Venzi P. Geodätische Abbildungen mit λij = Δgij. Tensor 34:2, 230-234, 1979. Přejít k původnímu zdroji...
  1082. Venzi P. On q-projectively recurrent spaces. Rend. Circ. math. Palermo, 30:3, 421-434, 1981. Přejít k původnímu zdroji...
  1083. Venzi P. Über konforme und geodätische Abbildungengen. Result. Math. 5:2, 184-198, 1982. Přejít k původnímu zdroji...
  1084. Venzi P. The metric ds2 = F(u)du2 + G(u)dσ2 and an application to concircular mappings. Util. Math. 22, 221-233, 1982.
  1085. Venzi P. Klassifikation der geodätischen Abbildungen mit Ric - Ric = Δg. Tensor 37, 137-147, 1982.
  1086. Venzi P. The geodesic mappings in Riemannian and pseudo-Riemannian manifolds, Stochastic processes in classical and quantum system. Proc. Inst. Int. Ascona, Switz., 1985. Lect. Notes, Phys. 262, 512-516, 1986. Přejít k původnímu zdroji...
  1087. Verner A.L. Semi-geodesic coordinate net on tubes of non-positive curvature. Trudy Mat. Inst. Stekhlov 76, 130-140, 1995.
  1088. Verozub L. Geodesic-invariant equations of gravitation. Ann. Phys. 17:1, 28-51, 2008. Přejít k původnímu zdroji...
  1089. Verozub L.V. Hydrodynamic flow as congruence of geodesic lines in Riemannian space-time. Int. J. Mod. Phys. D 17:2, 337-342, 2008. Přejít k původnímu zdroji...
  1090. Vilms J. Totally geodesic maps. J. Differ. Geom. 4, 73-79, 1970. Přejít k původnímu zdroji...
  1091. Vinnik A.V. The property of reciprocity of rotary diffeomorphisms of two-dimensional Riemannian spaces. Differ. Geom. Mnogoobr. Figur 29, 13-16, 1998.
  1092. Vinnik A.V. Property of reciprocity of rotary diffeomorphisms of two-dimensional Riemannian spaces. Visn. Odes. Derzh. Univ., Ser. Fiz.-Mat. Nauky 4:4, 90-93, 1999.
  1093. Vinnik A.V., Leiko S.G. Isoperimetric extremals of rotation functionals on twodimensional connected Lie groups with invariant Riemannian metrics. Russ. Math. 44:7, 1-3, 2000.
  1094. Vishnevskii V.V. On parabolically analog of A-spaces. Izv. VUZ, Mat. 68, 29-38, 1968.
  1095. Vishnevskii V.V. Manifolds over plural numbers and semitangent structures. J. Math. Sci. 51, 2613-2642, 1990. Přejít k původnímu zdroji...
  1096. Voss K. Geodesic mappings of the ellipsoid. Geometry and topology of submanifolds X. Proc. of Conf. Singapore: World Sci. 294-302, 2000. Přejít k původnímu zdroji...
  1097. Vŗanceanu G. Sur la representation géodésique des espaces de Riemann. Rev. Roum. Math. Pures Appl. 1(3), 147-165, 1956.
  1098. Vraņceanu G. Proprietati globale ale spatiilor bui Riemann cu conexiune abina constanta. Stud. Cerc. Mat. Acad. RPR, 14:1, 7-22, 1963. Přejít k původnímu zdroji...
  1099. Vries H.L. Über Riemannsche Räume, die infinitesimal konforme Transformationen gestatten. Math. Z. 60:3, 328-347, 1954. Přejít k původnímu zdroji...
  1100. Wagner V. On generalized Berwald spaces. C.R. (Dokl.) Acad. Sci. URSS 39, 3-5, 1943.
  1101. Walker A.G. On Ruse's spaces of recurrent curvature. Proc. London Math. Soc. 2, 52, 36-64, 1950. Přejít k původnímu zdroji...
  1102. Walker A.G. Conformally Kähler manifolds. Proc. Cambridge Philos. Soc. 50, 16-19, 1954. Přejít k původnímu zdroji...
  1103. Wei X. On geodesic mapping of special Finsler spaces. (Chinese. English summary) J. Xiamen Univ., Nat. Sci. 44:2, 151-154, 2005.
  1104. Westlake W.J. Hermitian spaces in geodesic correspondence. Proc. AMS 5:2, 301-303, 1954. Přejít k původnímu zdroji...
  1105. Weyl H. Zur Infinitesimalgeometrie Einordnung der projektiven und der konformen Auffassung. Göttinger Nachrichten, 99-112, 1921.
  1106. Wood J. Harmonic maps and harmonic morphisms. J.Math. Sci. 94:2, 1263-1269, 1999. Přejít k původnímu zdroji...
  1107. Yablonskaya N.V. On some classes of almost geodesic mappings of general spaces with affine connections. Ukr. Geom. Sb. 27, 120-124, 1984.
  1108. Yablonskaya N.V. Special groups of almost geodesic transformations of spaces with affine connection. Sov. Math. 30:1, 105-108, 1986. ⊲ Izv. vuzov, Mat. 284, 78-80, 1986.
  1109. Yamada T. On certain recurrent space and HP-transformation in a Kahlerian manifold. J. Asahikawa Tech. Coll. 13, 103-109, 1976.
  1110. Yamaguchi S. On infinitesimal projective transformations in non-Riemannian recurrent spaces. Tensor 18, 271-278, 1967.
  1111. Yamaguchi S. On Kählerian torse-forming vector fields. Kodai Math. J. 2:4, 103-115, 1979. Přejít k původnímu zdroji...
  1112. Yamaguchi S., Adati T. On holomorphically subprojective Kahlerian manifold. I-II. Ann. Mat. pura ed appl. 112, 217-229, 1977; 113, 111-125, 1977. Přejít k původnímu zdroji...
  1113. Yano K. Concircular Geometry. Proc. Imp. Acad. Tokyo, 16, 195-200, 354-360, 442-448, 505-511, 1940. Přejít k původnímu zdroji...
  1114. Yano K. On the torse-forming directions in Riemannian spaces. Proc. Imp. Acad. Tokyo 20, 340-345, 1944. Přejít k původnímu zdroji...
  1115. Yano K., Ishihara S. Harmonic and relatively affine mappings. J. Differ. Geom. 10, 501-509, 1975. Přejít k původnímu zdroji...
  1116. Yano K., Nagano T. Some theorems on projective and conformal transformations. Koninkl. Nederl. Akad. Wet. A60:4, 451-458, 1957. Přejít k původnímu zdroji...
  1117. Yau S.T. Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry. Indiana Univ. Math. J. 25, 659-670, 1976. Přejít k původnímu zdroji...
  1118. Yildirim G.Ç., Arsan G.G. Geodesic mappings between Kahler-Weyl spaces. Diff. Geometry - Dynamical Systems, 9, 156-159, 2007.
  1119. Zhang Z.-H. Gradient shrinking solitons with vanishing Weyl tensor. Pac. J. Math. 242, 189-200, 2009. Přejít k původnímu zdroji...
  1120. Zlatanović M., Hinterleitner I., Najdanović M. Geodesic mapping onto Kählerian spaces of the first kind. Czechoslovak Math. J. 64:4, 1113-1122, 2014. Přejít k původnímu zdroji...
  1121. Zlatanović M., Hinterleitner I., Najdanović M. On equitorsion concircular tensors of generalized Riemannian spaces. Filomat, 28:3, 463-471, 2014. Přejít k původnímu zdroji...
  1122. Zubrilin K.M. P-geodesic diffeomorphisms of tangent bundles induced by holomorphically projective diffeomorphisms of Kählerian spaces. Zb. Pr. Inst. Mat. NAN Ukr. 3:3, 132-162, 2006.
  1123. Zubrilin K.M. p-geodesic transformations and their groups in tangent bundles of the second order induced by concircular transformations of the bases. Ukrainian Math. J. 61:3, 414-434, 2009. Přejít k původnímu zdroji...
  1124. Zubrilin K.M. p-geodesic transformations induced by infinitesimal holomorphically projective transformations of Kähler spaces. Russian Math. (Iz. VUZ) 56:11, 31-44, 2012. Přejít k původnímu zdroji...
  1125. Zubrilin K.M. On preservation of the order of flattening by an induced diffeomorphism. Ukrainian Math. J. 65:11, 1642-1660, 2014. Přejít k původnímu zdroji...
  1126. Zubrilin K.M. The flattened infinitesimal transformations generated by the infinitesimal concircular transformations. Russian Math. (Iz. VUZ) 59:12, 21-35, 2015. Přejít k původnímu zdroji...
  1127. Zudina T.V., Stepanov S.E. On classification of equivolume mappings of pseudo- Riemannian manifolds. Izv. VUZ, 531, 1-10, 2006.