ISBN online: 978-80-244-6177-9 | DOI: 10.5507/lf.22.24461779

Vybrané metody forenzní genetiky

Jiří Drábek (Ed.)


The methodological book "Selected Methods of Forensic Genetics" is intended for laboratory technicians at the Criminalistic Institute of Prague (KÚP), Department of Criminalistic Expertise (OKTE), and other laboratories dealing with genetic methods with potential application in criminalistics. It will also be useful for students of bachelor, master, and doctoral programmes of science faculties.
The book does not aim to provide an overview of the current state of methods development in the field of forensic genetics. The aim of our 11-member author team is to provide readers with only those methods that we ourselves have implemented and validated in our laboratories.
The introductory, theoretical chapter is followed by five method chapters: DNA profiling by STR locus analysis, identification of an unknown animal species, mtDNA sequencing using massively parallel sequencing, and two methods of methylation detection for biological age determination: pyrosequencing with a commercial kit and massively parallel sequencing with a laboratory-developed method.
Before each method chapter, the principles of the method are described, and the book is illustrated with pictures and diagrams. Each chapter is followed by tips for solving potential problems. The book promotes best laboratory practices to increase the reliability of forensic laboratory testing.

1. edition, online: 2022, publisher: Univerzita Palackého v Olomouci, Křížkovského 8, 771 47 Olomouc



References

  1. Gill P, Jeffreys AJ, Werrett DJ. Forensic application of DNA 'fingerprints'. Nature. 1985;318(6046):577-9. Go to original source...
  2. Jeffreys AJ, Wilson V, Thein SL. Hypervariable 'minisatellite' regions in human DNA. Nature. 1985;314(6006):67-73. Go to original source...
  3. Jeffreys AJ, Wilson V, Thein SL. Individual-specific 'fingerprints' of human DNA. Nature. 1985;316(6023):76-9. Go to original source...
  4. Hall CL, Kesharwani RK, Phillips NR, Planz JV, Sedlazeck FJ, Zascavage RR. Accurate profiling of forensic autosomal STRs using the Oxford Nanopore Technologies MinION device. Forensic Sci Int Genet. 2022;56:102629. Go to original source...
  5. Fan H, Wang L, Liu C, Lu X, Xu X, Ru K, et al. Development and validation of a novel 133-plex forensic STR panel (52 STRs and 81 Y-STRs) using single-end 400 bp massive parallel sequencing. Int J Legal Med. 2022;136(2):447-64. Go to original source...
  6. Dowdeswell TL. Forensic genetic genealogy: A profile of cases solved. Forensic Sci Int Genet. 2022;58:102679. Go to original source...
  7. Guerrini CJ, Wickenheiser RA, Bettinger B, McGuire AL, Fullerton SM. Four misconceptions about investigative genetic genealogy. J Law Biosci. 2021;8(1):lsab001. Go to original source...
  8. Wickenheiser RA. Expanding DNA database effectiveness. Forensic Sci Int Synerg. 2022;4:100226. Go to original source...
  9. Simkova H. Breviar forenzni genetiky: forenzni analyza v otazkach a odpovedich. Drabek J, Horinek A, Stenzl V, editors. Brno: Tribun EU s.r.o.; 2012. 1-214 p.
  10. Vasek J, Cilova D, Melounova M, Svoboda P, Zdenkova K, Cermákova E, et al. OpiumPlex is a novel microsatellite system for profiling opium poppy (Papaver somniferum L.). Sci Rep. 2021;11(1):12799. Go to original source...
  11. Amendt J, Richards CS, Campobasso CP, Zehner R, Hall MJ. Forensic entomology: applications and limitations. Forensic Sci Med Pathol. 2011;7(4):379-92. Go to original source...
  12. Karadayi S. Assessment of the link between evidence and crime scene through soil bacterial and fungal microbiome: A mock case in forensic study. Forensic Sci Int. 2021;329:111060. Go to original source...
  13. Bozza S, Scherz V, Greub G, Taroni F. A probabilistic approach to evaluate salivary microbiome in forensic science when the Defense says: 'It is my twin brother'. Forensic Sci Int Genet. 2022;57:102638. Go to original source...
  14. Jan C, Fumagalli L. Polymorphic DNA microsatellite markers for forensic individual identification and parentage analyses of seven threatened species of parrots (family Psittacidae). Peerj. 2016;4:https://doi.org/10.7717/peerj.2416. Go to original source...
  15. Cunha HA, da Silva VM, Santos TE, Moreira SM, do Carmo NA, Solé-Cava AM. When You Get What You Haven't Paid for: Molecular Identification of "Douradinha" Fish Fillets Can Help End the Illegal Use of River Dolphins as Bait in Brazil. J Hered. 2015;106 Suppl 1:565-72. Go to original source...
  16. Johnson TA, Iyengar A. Phylogenetic evidence for a case of misleading rather than mislabeling in caviar in the United Kingdom. J Forensic Sci. 2015;60 Suppl 1:S248-53. Go to original source...
  17. Linacre A, Gusmao L, Hecht W, Hellmann AP, Mayr WR, Parson W, et al. ISFG: Recommendations regarding the use of non-human (animal) DNA in forensic genetic investigations. Forensic Science International: Genetics. 2011;5(5):501-5. Go to original source...
  18. Walsh S, Wollstein A, Liu F, Chakravarthy U, Rahu M, Seland JH, et al. DNA-based eye colour prediction across Europe with the IrisPlex system. Forensic Science International: Genetics. 2011;6(3):330-40. Go to original source...
  19. Branicki W, Liu F, van DK, Draus-Barini J, Pospiech E, Walsh S, et al. Model-based prediction of human hair color using DNA variants. Human Genetics. 2011;129(4):443-54. Go to original source...
  20. Tozzo P, Politi C, Delicati A, Gabbin A, Caenazzo L. External visible characteristics prediction through SNPs analysis in the forensic setting: a review. Front Biosci (Landmark Ed). 2021;26(10):828-50. Go to original source...
  21. Berger C, Heinrich J, Berger B, Hecht W, Parson W, On Behalf Of Ca D. Towards Forensic DNA Phenotyping for Predicting Visible Traits in Dogs. Genes (Basel). 2021;12(6). Go to original source...
  22. Haas C, Hanson E, Bar W, Banemann R, Bento AM, Berti A, et al. mRNA profiling for the identification of blood-Results of a collaborative EDNAP exercise. Forensic Science International: Genetics. 2010;5(1):21-6. Go to original source...
  23. Glynn CL. Potential applications of microRNA profiling to forensic investigations. Rna. 2020;26(1):1-9. Go to original source...
  24. Frumkin D, Wasserstrom A, Budowle B, Davidson A. DNA methylation-based forensic tissue identification. Forensic Science International: Genetics. 2010;5(5):517-24. Go to original source...
  25. Bell CG, Lowe R, Adams PD, Baccarelli AA, Beck S, Bell JT, et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 2019;20(1):249. Go to original source...
  26. Parson W. Age Estimation with DNA: From Forensic DNA Fingerprinting to Forensic (Epi) Genomics: A Mini-Review. Gerontology. 2018;64(4):326-32. Go to original source...
  27. Pospiech E, Teisseyre P, Mielniczuk J, Branicki W. Predicting Physical Appearance from DNA Data-Towards Genomic Solutions. Genes (Basel). 2022;13(1). Go to original source...
  28. Buckleton J, Triggs J, Walsh SJ. Forensic DNA Evidence Interpretation. Buckleton J, Triggs J, Walsh SJ, editors. Boca Raton, FL: CRC Press; 2005. 1-534 p.
  29. Bar W, Brinkmann B, Budowle B, Carracedo A, Gill P, Lincoln P, et al. DNA recommendations - Further report of the DNA Commission of the ISFH regarding the use of short tandem repeat systems. International Journal of Legal Medicine. 1997;110(4):175-6. Go to original source...
  30. Olaisen B, Bar W, Brinkmann B, Budowle B, Carracedo A, Gill P, et al. DNA recommendations 1997 of the International Society for Forensic Genetics. Vox Sanguinis. 1998;74(1):61-3. Go to original source...
  31. Puers C, Hammond HA, Jin L, Caskey CT, Schumm JW. Identification of repeat sequence heterogeneity at the polymorphic short tandem repeat locus HUMTH01[AATG]n and reassignment of alleles in population analysis by using a locus-specific allelic ladder. American Journal of Human Genetics. 1993;53(4):953-8.
  32. Cha YS, Choi SH, Lee JH, Shin SK, Lee SH, Lee SD, et al. Analysis of TPOX short tandem repeat locus with matrix-associated laser desorption/ionization time-of-flight-based restriction fragment mass polymorphism assay. Analytical Biochemistry. 2011;412(1):79-84. Go to original source...
  33. Court DS. DNA analysis: Current practice and problems. In: Gall J, Payne-James J, editors. Current Practice in Forensic Medicine. Chichester, UK: John Wiley & Sons, Ltd; 2011. p. 193-237. Go to original source...
  34. Rutty GN. An investigation into the transference and survivability of human DNA following simulated manual strangulation with consideration of the problem of third party contamination. International Journal of Legal Medicine. 2002;116(3):170-3. Go to original source...
  35. Butler J. Forensic DNA Typing, Second Edition: Biology, Technology, and Genetics of STR Markers: Academic Press; 2005. 1-688 p.
  36. Champlot S, Berthelot C, Pruvost M, Bennett EA, Grange T, Geigl EM. An efficient multistrategy DNA decontamination procedure of PCR reagents for hypersensitive PCR applications. PLoS ONE. 2010;5(9). Go to original source...
  37. Hoile R, Banos C, Colella M, Walsh SJ, Roux C. Gamma irradiation as a biological decontaminant and its effect on common fingermark detection techniques and DNA profiling. Journal of Forensic Sciences. 2010;55(1):171-7. Go to original source...
  38. Archer E, Allen H, Hopwood A, Rowlands D. Validation of a dual cycle ethylene oxide treatment technique to remove DNA from consumables used in forensic laboratories. Forensic Science International: Genetics. 2010;4(4):239-43. Go to original source...
  39. Frumkin D, Wasserstrom A, Davidson A, Grafit A. Authentication of forensic DNA samples. Forensic Science International: Genetics. 2010;4(2):95-103. Go to original source...
  40. Biedermann A, Hicks T, Voisard R, Taroni F, Champod C, Aitken CG, et al. E-learning initiatives in forensic interpretation: Report on experiences from current projects and outlook. Forensic Science International. 2012;230(1-3):2-7. Go to original source...
  41. Cook R, Evett IW, Jackson G, Jones PJ, Lambert JA. A model for case assessment and interpretation. Science & Justice. 1998;38(3):151-6. Go to original source...
  42. Li Cx, Han J-p, Ren W-y, Ji A-q, Xu X-l, Hu L. DNA profiling of spermatozoa by Laser Capture Microdissection and Low Volume-PCR. PLoS ONE. 2011;6(8). Go to original source...
  43. Zhu B, Furuki T, Okuda T, Sakurai M. Natural DNA mixed with trehalose persists in B-form double-stranding even in the dry state. JPhysChemB. 2007;111(20):5542-4. Go to original source...
  44. Caddy B, Taylor G, Linacre A. A review on the science of Low Template DNA analysis. 2008. p. 1-35.
  45. Kline MC, Duewer DL, Redman JW, Butler JM. Results from the NIST 2004 DNA quantitation study. Journal of Forensic Sciences. 2005;50(3):571-8. Go to original source...
  46. Taylor D. Using a multi-head, convolutional neural network with data augmentation to improve electropherogram classification performance. Forensic Sci Int Genet. 2022;56:102605. Go to original source...
  47. Perlin MW, Szabady B. Linear mixture analysis: a mathematical approach to resolving mixed DNA samples. Journal of Forensic Sciences. 2001;46(6):1372-8. Go to original source...
  48. Robertson B, Vignaux GA, Berger CEH. Interpreting evidence: Evaluating Forensic Science in the Courtroom, 2nd edition. Chichester, New York, Brisbane, Toronto, Singapore: John Wiley & Sons, Ltd.; 2016. 1-216 p. Go to original source...
  49. Weir BS. DNA statistics in the Simpson matter. Nature Genetics. 1995;11(4):365-8. Go to original source...
  50. Song YS, Patil A, Murphy EE, Slatkin M. Average probability that a "cold hit" in a DNA database search results in an erroneous attribution. Journal of Forensic Sciences. 2009;54(1):22-7. Go to original source...
  51. Cook R, Evett IW, Jackson G, Jones PJ, Lambert JA. A hierarchy of propositions: deciding which level to address in casework. Science & Justice. 1998;38(4):231-9. Go to original source...
  52. Garbolino P, Taroni F. Evaluation of scientific evidence using Bayesian networks. Forensic Science International. 2002;125(2-3):149-55. Go to original source...
  53. Furst T, Simkova H, Zimmer J, Furstova J. Nova teorie dukazu a komentovany cesky preklad smernice ENFSI pro znalecke hodnoceni ve forenznich vedach. 1st ed. Praha: Nakladatelstvi Leges, s.r.o.; 2022. 154 p.
  54. Storvik G, Egeland T. The DNA database search controversy revisited: bridging the Bayesian-frequentist gap. Biometrics. 2007;63(3):922-5. Go to original source...
  55. Drabek J. Interpretace DNA profilu pri urcovani otcovstvi a pribuznosti. Simkova H, Zidkova A, editors. Brno: Tribun EU, s.r.o.; 2011. 1-95 p.
  56. Harrel M, Holmes AS. Review of direct PCR and Rapid DNA approaches to streamline sexual assault kit testing. J Forensic Sci. 2022;online ahead of print. Go to original source...
  57. Krüger J, Schleinitz D. Genetic Fingerprinting Using Microsatellite Markers in a Multiplex PCR Reaction: A Compilation of Methodological Approaches from Primer Design to Detection Systems. Methods Mol Biol. 2017;1492:1-15. Go to original source...
  58. de Knijff P. On the Forensic Use of Y-Chromosome Polymorphisms. Genes (Basel). 2022;13(5). Go to original source...
  59. Gomes I, Pinto N, Antão-Sousa S, Gomes V, Gusmão L, Amorim A. Twenty Years Later: A Comprehensive Review of the X Chromosome Use in Forensic Genetics. Front Genet. 2020;11:926. Go to original source...
  60. Spitzer A, Elkayam Sapir L, Amiel M. What is she doing here? Klinefelter syndrome in forensic casework. Sci Justice. 2021;61(4):443-8. Go to original source...
  61. Buckleton J, Robertson B, Curran J, Berger C, Taylor D, Bright JA, et al. A review of likelihood ratios in forensic science based on a critique of Stiffelman "No longer the Gold standard: Probabilistic genotyping is changing the nature of DNA evidence in criminal trials". Forensic Sci Int. 2020;310:110251. Go to original source...
  62. Morrison GS. Advancing a paradigm shift in evaluation of forensic evidence: The rise of forensic data science. Forensic Sci Int Synerg. 2022;5:100270. Go to original source...
  63. Raffone C, Baeta M, Lambacher N, Granizo-Rodríguez E, Etxeberria F, de Pancorbo MM. Intrinsic and extrinsic factors that may influence DNA preservation in skeletal remains: A review. Forensic Sci Int. 2021;325:110859. Go to original source...
  64. Holmes AS, Houston R, Elwick K, Gangitano D, Hughes-Stamm S. Evaluation of four commercial quantitative real-time PCR kits with inhibited and degraded samples. Int J Legal Med. 2018;132(3):691-701. Go to original source...
  65. Gile GH, Stern RF, James ER, Keeling PJ. DNA barcoding of chlorarachniophytes using nucleomorph ITS sequences. Journal of Phycology. 2010;46(4):743-50. Go to original source...
  66. Struder-Kypke MC, Lynn DH. Comparative analysis of the mitochondrial cytochrome c oxidase subunit I (COI) gene in ciliates (Alveolata, Ciliophora) and evaluation of its suitability as a biodiversity marker. Systematics and Biodiversity. 2010;8(1):131-48. Go to original source...
  67. Hamsher SE, LeGresley MM, Martin JL, Saunders GW. A comparison of morphological and molecular-based surveys to estimate the species richness of Chaetoceros and Thalassiosira (bacillariophyta), in the Bay of Fundy. PLoS One. 2013;8(10):e73521. Go to original source...
  68. Kaczmarska I, Ehrman JM, Moniz MBJ, Davidovich N. Phenotypic and genetic structure of interbreeding populations of the diatom Tabularia fasciculata (Bacillariophyta). Phycologia. 2009;48(5):391-403. Go to original source...
  69. Purty RS, Chatterjee S. DNA Barcoding: An Effective Technique in Molecular Taxonomy. Austin J Biotechnol Bioeng. 2016;3(1):1059.
  70. Smith MA, Bertrand C, Crosby K, Eveleigh ES, Fernandez-Triana J, Fisher BL, et al. Wolbachia and DNA barcoding insects: patterns, potential, and problems. PLoS One. 2012;7(5):e36514. Go to original source...
  71. Case RJ, Boucher Y, Dahllöf I, Holmström C, Doolittle WF, Kjelleberg S. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl Environ Microbiol. 2007;73(1):278-88. Go to original source...
  72. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173(2):697-703. Go to original source...
  73. Links MG, Dumonceaux TJ, Hemmingsen SM, Hill JE. The chaperonin-60 universal target is a barcode for bacteria that enables de novo assembly of metagenomic sequence data. PLoS One. 2012;7(11):e49755. Go to original source...
  74. Makarova O, Contaldo N, Paltrinieri S, Kawube G, Bertaccini A, Nicolaisen M. DNA barcoding for identification of 'Candidatus Phytoplasmas' using a fragment of the elongation factor Tu gene. PLoS One. 2012;7(12):e52092. Go to original source...
  75. Schneider KL, Marrero G, Alvarez AM, Presting GG. Classification of plant associated bacteria using RIF, a computationally derived DNA marker. PLoS One. 2011;6(4):e18496. Go to original source...
  76. Liu L, Huang XL, Zhang RL, Jiang LY, Qiao GX. Phylogenetic congruence between Mollitrichosiphum (Aphididae: Greenideinae) and Buchnera indicates insect-bacteria parallel evolution. Systematic Entomology. 2013;38(1):81-92. Go to original source...
  77. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A. 2012;109(16):6241-6. Go to original source...
  78. Stielow JB, Lévesque CA, Seifert KA, Meyer W, Iriny L, Smits D, et al. One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia. 2015;35:242-63. Go to original source...
  79. Khaund P, Joshi SR. DNA barcoding of wild edible mushrooms consumed by the ethnic tribes of India. Gene. 2014;550(1):123-30. Go to original source...
  80. Brown SP, Rigdon-Huss AR, Jumpponen A. Analyses of ITS and LSU gene regions provide congruent results on fungal community responses. Fungal Ecology. 2014;9:65-8. Go to original source...
  81. Chen S, Yao H, Han J, Liu C, Song J, Shi L, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One. 2010;5(1):e8613. Go to original source...
  82. Theodoridis S, Stefanaki A, Tezcan M, Aki C, Kokkini S, Vlachonasios KE. DNA barcoding in native plants of the Labiatae (Lamiaceae) family from Chios Island (Greece) and the adjacent Çeşme-Karaburun Peninsula (Turkey). Mol Ecol Resour. 2012;12(4):620-33. Go to original source...
  83. Yang Y, Zhai Y, Liu T, Zhang F, Ji Y. Detection of Valeriana jatamansi as an adulterant of medicinal Paris by length variation of chloroplast psbA-trnH region. Planta Med. 2011;77(1):87-91. Go to original source...
  84. Gao T, Yao H, Song J, Liu C, Zhu Y, Ma X, et al. Identification of medicinal plants in the family Fabaceae using a potential DNA barcode ITS2. J Ethnopharmacol. 2010;130(1):116-21. Go to original source...
  85. Lobo J, Costa PM, Teixeira MA, Ferreira MS, Costa MH, Costa FO. Enhanced primers for amplification of DNA barcodes from a broad range of marine metazoans. BMC Ecol. 2013;13:34. Go to original source...
  86. Yacoub HA, Fathi MM, Sadek MA. Using cytochrome b gene of mtDNA as a DNA barcoding marker in chicken strains. Mitochondrial DNA. 2015;26(2):217-23. Go to original source...
  87. Siddappa CM, Saini M, Das A, Doreswamy R, Sharma AK, Gupta PK. Sequence Characterization of Mitochondrial 12S rRNA Gene in Mouse Deer (Moschiola indica) for PCR-RFLP Based Species Identification. Mol Biol Int. 2013;2013:783925. Go to original source...
  88. Vences M, Thomas M, van der Meijden A, Chiari Y, Vieites DR. Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Front Zool. 2005;2(1):5. Go to original source...
  89. Yang L, Tan Z, Wang D, Xue L, Guan MX, Huang T, et al. Species identification through mitochondrial rRNA genetic analysis. Sci Rep. 2014;4:4089. Go to original source...
  90. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25(9):1189-91. Go to original source...
  91. Irwin DM, Kocher TD, Wilson AC. Evolution of the cytochrome b gene of mammals. J Mol Evol. 1991;32(2):128-44. Go to original source...
  92. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3(5):294-9.
  93. Carracedo A, Bar W, Lincoln P, Mayr W, Morling N, Olaisen B, et al. DNA commission of the international society for forensic genetics: guidelines for mitochondrial DNA typing. Forensic Science International. 2000;110(2):79-85. Go to original source...
  94. Parson W, Gusmao L, Hares DR, Irwin JA, Mayr WR, Morling N, et al. DNA Commission of the International Society for Forensic Genetics: Revised and extended guidelines for mitochondrial DNA typing. Forensic Science International-Genetics. 2014;13:134-42. Go to original source...
  95. Abicht A, Scharf F, Kleinle S, Schön U, Holinski-Feder E, Horvath R, et al. Mitochondrial and nuclear disease panel (Mito-aND-Panel): Combined sequencing of mitochondrial and nuclear DNA by a cost-effective and sensitive NGS-based method. Mol Genet Genomic Med. 2018;6(6):1188-98. Go to original source...
  96. Lange V, Böhme I, Hofmann J, Lang K, Sauter J, Schöne B, et al. Cost-efficient high-throughput HLA typing by MiSeq amplicon sequencing. BMC Genomics. 2014;15:63. Go to original source...
  97. Jager AC, Alvarez ML, Davis CP, Guzman E, Han Y, Way L, et al. Developmental validation of the MiSeq FGx Forensic Genomics System for Targeted Next Generation Sequencing in Forensic DNA Casework and Database Laboratories. Forensic Science International-Genetics. 2017;28:52-70. Go to original source...
  98. Cihlar JC, Amory C, Lagace R, Roth C, Parson W, Budowle B. Developmental Validation of a MPS Workflow with a PCR-Based Short Amplicon Whole Mitochondrial Genome Panel. Genes. 2020;11(11). Go to original source...
  99. Brandhagen MD, Just RS, Irwin JA. Validation of NGS for mitochondrial DNA casework at the FBI Laboratory. Forensic Science International-Genetics. 2020;44(102151). Go to original source...
  100. Hickman MP, Grisedale KS, Bintz BJ, Burnside ES, Hanson EK, Ballantyne J, et al. Recovery of whole mitochondrial genome from compromised samples via multiplex PCR and massively parallel sequencing. Future Science OA. 2018;4(9). Go to original source...
  101. Holland MM, Pack ED, McElhoe JA. Evaluation of GeneMarker(reg) HTS for improved alignment of mtDNA MPS data, haplotype determination, and heteroplasmy assessment. Forensic Sci Int Genet. 2017;28:90-8. Go to original source...
  102. Wang Z, Zhu R, Zhang S, Bian Y, Lu D, Li C. Differentiating between monozygotic twins through next generation mtGenome sequencing. Analytical Biochemistry. 2015;490:1-6. Go to original source...
  103. Schmitt MW, Kennedy SR, Salk JJ, Fox EJ, Hiatt JB, Loeb LA. Detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci U S A. 2012;109(36):14508-13. Go to original source...
  104. Irwin JA, Saunier JL, Niederstätter H, Strouss KM, Sturk KA, Diegoli TM, et al. Investigation of heteroplasmy in the human mitochondrial DNA control region: a synthesis of observations from more than 5000 global population samples. J Mol Evol. 2009;68(5):516-27. Go to original source...
  105. Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF. Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet. 2008;83(2):254-60. Go to original source...
  106. Just RS, Irwin JA, Parson W. Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing. Forensic Sci Int Genet. 2015;18:131-9. Go to original source...
  107. Gallimore JM, McElhoe JA, Holland MM. Assessing heteroplasmic variant drift in the mtDNA control region of human hairs using an MPS approach. Forensic Sci Int Genet. 2018;32:7-17. Go to original source...
  108. Parson W, Dur A. EMPOP-A forensic mtDNA database. Forensic Science International: Genetics. 2007;1(2):88-92. Go to original source...
  109. Fan L, Yao YG. An update to MitoTool: Using a new scoring system for faster mtDNA haplogroup determination. Mitochondrion. 2013;13(4):360-3. Go to original source...
  110. Weissensteiner H, Pacher D, Kloss-Brandstatter A, Forer L, Specht G, Bandelt HJ, et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Research. 2016;44(W1):W58-W63. Go to original source...
  111. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The Hallmarks of Aging. Cell. 2013;153(6):1194-217. Go to original source...
  112. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115. Go to original source...
  113. Mendelsohn AR, Larrick JW. Epigenetic Drift Is a Determinant of Mammalian Lifespan. Rejuvenation Res. 2017;20(5):430-6. Go to original source...
  114. Marioni RE, Shah S, McRae AF, Chen BH, Colicino E, Harris SE, et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015;16:25. Go to original source...
  115. Bocklandt S, Lin W, Sehl ME, Sanchez FJ, Sinsheimer JS, Horvath S, et al. Epigenetic Predictor of Age. PLoS ONE. 2011;6(6). Go to original source...
  116. Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biology. 2014;15(2):R24. Go to original source...
  117. Jung SE, Lim SM, Hong SR, Lee EH, Shin KJ, Lee HY. DNA methylation of the ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, and TRIM59 genes for age prediction from blood, saliva, and buccal swab samples. Forensic Science International-Genetics. 2019;38:1-8. Go to original source...
  118. Meissner C, Ritz-Timme S. Molecular pathology and age estimation. Forensic Science International. 2010;203(1-3):34-43. Go to original source...
  119. Zbiec-Piekarska R, Spolnicka M, Kupiec T, Parys-Proszek A, Makowska Z, Paleczka A, et al. Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic Science International: Genetics. 2015;17:173-9. Go to original source...
  120. Kayser M, Schneider PM. DNA-based prediction of human externally visible characteristics in forensics: motivations, scientific challenges, and ethical considerations. Forensic Sci Int Genet. 2009;3(3):154-61. Go to original source...
  121. Kayser M. Forensic DNA Phenotyping: Predicting human appearance from crime scene material for investigative purposes. Forensic Science International: Genetics. 2015;18:33-48. Go to original source...
  122. Samuel G, Prainsack B. The regulatory landscape of forensic DNA phenotyping in Europe. London; 2018.
  123. Vidaki A, Kayser M. From forensic epigenetics to forensic epigenomics: broadening DNA investigative intelligence. Genome Biol. 2017;18(1):238. Go to original source...
  124. Lee HY, Lee SD, Shin KJ. Forensic DNA methylation profiling from evidence material for investigative leads. BMB Reports. 2016;49(7):359-69. Go to original source...
  125. Schneider PM, Prainsack B, Kayser M. The Use of Forensic DNA Phenotyping in Predicting Appearance and Biogeographic Ancestry. Deutsches Arzteblatt International. 2019;116(51-52):873-80. Go to original source...
  126. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359-67. Go to original source...
  127. Daunay A, Baudrin LG, Deleuze JF, How-Kit A. Evaluation of six blood-based age prediction models using DNA methylation analysis by pyrosequencing. Sci Rep. 2019;9(1):8862. Go to original source...
  128. Bekaert B, Kamalandua A, Zapico SC, Van de Voorde W, Decorte R. Improved age determination of blood and teeth samples using a selected set of DNA methylation markers. Epigenetics. 2015;10(10):922-30. Go to original source...
  129. Park JL, Kim JH, Seo E, Bae DH, Kim SY, Lee HC, et al. Identification and evaluation of age-correlated DNA methylation markers for forensic use. Forensic Science International: Genetics. 2016;23:64-70. Go to original source...
  130. Zbiec-Piekarska R, Spolnicka M, Kupiec T, Makowska Z, Spas A, Parys-Proszek A, et al. Examination of DNA methylation status of the ELOVL2 marker may be useful for human age prediction in forensic science. Forensic Science International: Genetics. 2015;14:161-7. Go to original source...
  131. Huang Y, Yan J, Hou JY, Fu XD, Li LY, Hou YP. Developing a DNA methylation assay for human age prediction in blood and bloodstain. Forensic Science International-Genetics. 2015;17:129-36. Go to original source...
  132. Slavkovsky R. Bisulfite amplicon next-generation sequencing for methylation status assessment. 2021. In: Laboratory Techniques in Cellular and Molecular Medicine [Internet]. Olomouc: Vydavatelstvi UPOL. 1. [409-21].
  133. Kotkova L. Determination of length of nucleic acid fragments by digital capillary electrophoresis. 2021. In: Laboratory Techniques in Cellular and Molecular Medicine [Internet]. Olomouc: Vydavatelstvi UP. 1. [399-407].
  134. Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27(11):1571-2. Go to original source...
  135. Langdon WB. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData Min. 2015;8(1):1. Go to original source...