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Introduction

Introductory statistics courses equip students with a variety of tools for describing data

and null hypothesis significance testing. Measures of location, variability and other char-

acteristics, correlation coefficients, as well as parametric and non-parametric bivariate

tests serve as useful instruments in countless situations. However, when designing more

advanced experiments, large-scale questionnaire surveys, and other sophisticated studies,

the shortcomings of the above procedures are often felt. They describe the behavior of

variables separately, and they can only capture statistical relationships at the level of

pairs of variables.

In this textbook, we present a more advanced view of quantitative data analysis that

allows us to describe diverse relationships within groups of variables. The purpose of

this textbook is to introduce students to the world of statistical modeling, particularly to

linear regression models.

Regression models of various kinds are the central research tool in psychology and

almost all other empirical sciences. Without knowledge of linear regression, it is difficult

to publish research results and, especially for students considering a career in academia,

a good knowledge of the topic is essential.

This textbook expands on the topics covered in the basic statistics courses. Thus, for

a good understanding, the reader should be familiar with concepts such as probability

distribution, mean, variance, statistical estimation, hypothesis tests, and p-values. On

the other hand, the aim of the author of this textbook is to make a rather complicated

subject accessible to those students who have heard the concepts mentioned but whose

deep knowledge has never been acquired or has been lost long ago. As a result of this

effort, the author often had to choose between mathematical precision and clarity. If the

topic of statistical modeling caught your interest, compare the knowledge gained with

other more advanced texts that correct many of the simplifications and inaccuracies in

this textbook.

In the following chapters, various procedures will be demonstrated on several data

sets. Most of them can be downloaded in an MS Excel file at

dostal.vyzkum-psychologie.cz/soubory/data linear models.xlsx

I would like to thank my teacher and friend Ondřej Vencálek for reading the text and,

where my statements deviated from mathematical theory in a particularly ignoble way,

for stepping in and making me rewrite the passages in question.

author
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1 Statistical model

All models are wrong,

but some are useful.

The famous statement by George Box, the eminent British statistician and incidentally

the son-in-law of Ronald Fisher, illustrates well the essence of what we mean by the word

“model”. What are models for if none of them are correct? And what do we actually

mean by the word model?

Reality is infinitely complex. It is so complex that we can never really explore the

deepest laws of its functioning. The truth of what laws govern nature, including human

behavior and mind, will forever remain a mystery for humankind.

If we can never understand reality in its entirety, how is it possible that many things

that come from the workshop of man simply work? How is it that we can fly on holiday

in an airplane when no-one has managed to work out exactly what rules does airflow in

turbines of airplane engines follow? How is it that a skilled therapist can rid us of our

phobia of elevators when they have no idea what exactly is going on in our brain and

what was the phobia caused by?

We do not need to know the whole truth with all the details in order to influence reality

and to put scientific knowledge into practice. What we need is a clever simplification of

reality that leaves out the less important aspects while remaining accurate enough to

resemble how reality works. Strictly speaking, this simplification is wrong because it is

not equal with reality. On the other hand, this simplification can be extremely useful.

From now on, we will refer to this simplification of reality using the word model.

In the primary statistics courses, we learned a trick to simplify reality. Although we

assume that the world follows cause and effect rules and is strictly deterministic, it often

pays to ignore many factors and declare that chance plays a role. The phenomena we

label as random can be described using random variables. If we follow this approach when

constructing our model, we refer to it as the statistical model.

Statistical models offer a wide range of advantages. In particular, we can compare

them with the world around us easily. We can make observations (measurements) of the

studied phenomenon and compare what we see with what we should see according to our

model. We can therefore easily assess to what extent our model fits or contradicts reality.

But the story does not end here. We can use statistical models to find the answers

to our questions. We can incorporate some (free) parameters into our model. Since

the statistical model is described by mathematical equations, this parameter is a number.

However, it is not a specific number, but an unknown value with a magnitude that can

only be estimated by our observation.
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Figure 1: Simple statistical model

Let us illustrate a particular statistical model that has free parameters by a following

example. We want to investigate whether a particular memory training has an effect on

performance in a memory test. For this purpose, we approach a group of volunteers,

randomly dividing them into two groups – an experimental group and a control group.

We then expose the experimental group to memory training, while the control group is

just talked to instead of being trained. Finally, both groups take the memory test.

The model could look like the following: Let us describe the experimental group

members’ performance in a memory test by a random variable A. Let us suppose this

random variable has normal distribution. Let us describe the performance of the control

group by a random variable B. This random variable has normal distribution as well,

and furthermore, let us suppose that both random variables have the same variance. The

expected values of random variables A and B differ by some value, let us call it β. This

difference β is a free parameter of the model. If β > 0, then people exposed to memory

training in fact score higher than people not exposed to it. If β is zero or less than zero,

then this is not the case. Our model is shown in Figure 1.

Note that this is indeed just a model, which of course differs from reality. The deter-

ministic conception of the world claims that randomness does not exist, but we are talking

about random variables. We are saying that A and B both have normal distributions,

which is probably not quite true even if we allow for the existence of some random vari-

ables. We claim that they both have exactly the same variance, which is almost certainly

not true. Obviously, this model is wrong, simply because it is just a model. On the other

hand, we can expect that in a given situation this model is very useful.

By observing the realizations of the random variables A and B, we can start estimating

the size of the parameter β. Moreover, since this is a statistical model, we can test the

validity of our hypotheses concerning the size of the parameter β.

We have been through this model many times before; we just probably did not realize

that it was a statistical model. We created it each time we performed a t-test for two

independent samples.

7



1.1 Linear statistical models

There are countless statistical models, and we could invent more on the fly to describe

any situation. From this diverse array, we will choose only a relatively narrow group of

models called linear models. Moreover, we will again choose only a small subset of linear

models that are similar in their structure.

We will only consider models that describe the behavior of a single dependent random

variable Y which we assume to be influenced by one or more factors X1, X2, . . . , Xk. The

word linear means that we assume that the value of the random variable Y corresponds

to a linear combination of the factors X1, X2, . . . , Xk. When a mathematician uses

the term linear combination, they are referring to a simple summation, but they assign

different weights to the individual addends. We will refer to these weights β1, β2, . . . , βk.

Each of the models we will be discussing in the following pages will have the form1:

Y = β0 + β1X1 + β2X2 + . . .+ βkXk.

In this textbook, we will always note the dependent variable by Y and refer to it as

the dependent or possibly the explained or the predicted variable. We will refer to the

independent variables X1 to Xk as factors, regressors, or predictors.

By requiring our model to always follow this structure, we have severely limited our

options. On the other hand, most of the research problems we encounter in psychology

students’ theses and dissertations (and, after all, in most research articles) fit into this

structure easily. It is common to examine some quantity Y and ask how it is affected

by some factors. For example, if we compose a thesis titled Sleep Disorders in Preschool

Children and decide to use such a linear model, we can expect the dependent variable

to be sleep quality (operationalized, for example, as the score of some questionnaire that

measures it). The X variables would then include, for example, the number of minutes the

child spends in front of the TV or playing computer games in the evening, their gender,

age, as well as information on whether the child was assigned to a group that performs

some kind of relaxation activity before falling asleep.

1 We will see this relationship in many various modifications on the pages of this textbook countless
times. More advanced readers should therefore be advised that this notation is not entirely correct, and
it is used here deliberately in order to make the text more readable. In fact, the relationship only holds
“on average”, so the left-hand side of the equation should be the expected (mean) value of the random
variable Y , i.e., E(Y ), or we should use a symbol indicating only an approximate equality instead of the
equal sign.
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The fact that the model is linear may sometimes not be apparent at first sight. For

example, we would probably not say at first glance that model

Y = β0 + β1

√
Z1Z2 + β2

(
4

Z3

+ 3

)
+ β3 sin(2πZ4)

belongs to the family of linear models. However, in fact, we can imagine thatX1 =
√
Z1Z2,

X2 =
4
Z3

+3 and X3 = sin(2πZ4), and again we get the form Y = β0+β1X1+β2X2+β3X3.

In contrast, for example, the model

Y =
eβ0+β1X1+...+βkXk

1 + eβ0+β1X1+...+βkXk

cannot be considered linear, since even with all effort we cannot convert it into a linear

combination of some regressors.

9



2 Parameters of the model and their estimation

As mentioned above, statistical models contain some parameters with unknown values.

Using the example of a model called simple regression, let us see what role these

parameters play and how we estimate their sizes. The simple regression is a model that

has only a single regressor X along with a single dependent variable Y . We could describe

it with the following equation:

Y = β0 + β1 · X

To get a better idea, let us proceed with a practical example. For example, let us try

to describe how many points a student scores on a written exam in cognitive psychology

(variable Y ) depending on how many hours they have spent studying for it (X). Therefore:

(number of points) = β0 + β1 · (number of hours spent studying)

To determine the values of β0 and β1 weights, we need to ask at least two students

how long they studied for and how they scored on the test. We asked Agatha, who scored

42 points and had studied for 16 hours, and Otto, who scored 30 points and had studied

for 10 hours.

Agatha: 42 = β0 + β1 · 16

Otto: 30 = β0 + β1 · 10

The data we obtained are consistent with what common sense tells us – Otto, who

spent six hours less time revising for the test than Agatha, actually scored lower. The

weight β1 is obviously a positive number indicating how many points each hour of studying

will on average give us. The problem can be solved as a system of equations with two

unknowns (β0 and β1). We can easily find that the value of β1 is 2 and β0 is 10. Therefore,

Agatha: 42 = 10 + 2 · 16

Otto: 30 = 10 + 2 · 10

We can conclude our mini research by claiming that each hour of studying for a

cognitive psychology test leads to a gain of two points. We also intuitively understand

the role of the coefficient β0. The model predicts that if we do not even open the textbook

(X = 0), we will score 10 points on average (β0 = 10).

If we were conducting real research, we would probably not rely on data from only

two respondents. Let us include Ursula in our sample. She did not put much effort into

preparation for the test, she only studied for two hours, but she probably managed to

copy some of the results from Agatha, or she is extremely talented, it is hard to say. She

managed to score 24 points.

Ursula: 24 = β0 + β1 · 2

10



Unfortunately, expanding the research sample reveals an unpleasant fact – the model

fails to bring any results.

Ursula: 24 ̸= 10 + 2 · 2

What more, there are no values of β0 and β1 that are suitable for all three participants

in our research. The solution is to extend our original model with one more term, which

we call residual and note it ϵ (epsilon)2. We can think of it as the size of the error that

the model generates for a given individual. Thus, the equation describing our model with

the residual would take the form:

Y = β0 + β1 · X + ϵ

If we insist that β0 = 10 and β1 = 2, then the residuals of each observation would take

the following values:

Agatha: 42 = 10 + 2 · 16 + 0

Otto: 30 = 10 + 2 · 10 + 0

Ursula: 24 = 10 + 2 · 2 + 10

This is obviously not a very fair solution. Our model perfectly accommodates the

results of Agata and Otto, where the error (residual) is zero, but in the case of Ursula it

is wrong by ten points. We could, of course, choose a different pair of numbers β0 and

β1, and get a different set of residuals. Some solutions will be better and other worse.

We consider the optimal solution to be the one that produces residuals as close to zero

as possible.

In order to compare the solutions, we need to develop an indicator (so-called mini-

mization criterion) that converts the obtained set of residuals into a single number that

reflects the quality of the solution. It turns out that the best minimization criterion is

not a simple sum of the residuals (or their absolute values), but a sum of their squares.

We will call this criterion residual sum of squares (RSS) and its formula takes the

following form:

RSS =
n∑

i=1

ϵ2i

The letter n indicates the sample size. In our case, n equals three and RSS equals 100

(since 02 + 02 + 102 = 100).

2 Note a minor terminological inaccuracy – in this text, we will not distinguish between a random
component and a residue, even though they are two related, however, not identical, concepts.
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2.1 Least squares method

Searching for parameter values that minimize RSS by trial and error would be tedious

and we would probably never achieve an accurate result. However, the calculation can

be done using the least squares method. The least squares method is famous for its

elegance and versatility and was used by Carl Friedrich Gauss in his calculations as early

as 1795. To calculate it, we need to know basic matrix and vector calculus. The parameter

estimation procedure using the least squares method can be described by the following

brief formula:

β̂ = (X′X)−1X′Y

where β̂ is a vector of parameter estimates, X is a design matrix containing a column

of ones and the values of all regressors in the other columns, Y is a vector of values of

the dependent variable. The operators ′ and −1 stand for transpose and matrix inverse,

respectively. In our example, the individual elements of the equation would have the

following values:

β̂ =

(
β̂0

β̂1

)
Y =

42
30
24

 X =

1 16
1 10
1 2


Note that instead of β0 and β1 we use the symbols β̂0 and β̂1. We will use the hat

symbol whenever we want to express that we are referring to an estimate,

not an exact value. If we repeated our calculation on triples of students other than

Otto, Agatha, and Ursula, we would arrive at different estimates of β̂, which would be

distributed around the actual unknown values of β. Estimates of β̂ are random variables

(statistics), and what more, they are the minimum-variance unbiased estimates of the

parameters β. Moreover, they become increasingly more accurate the more observations

we have.

In our case, after substituting into the equation utilizing the least squares method, we

obtain the values β̂0 = 20.27 and β̂1 = 1.26.3 After the substitution, we find the following

values of the residuals:

Agatha: 42 = 20.27 + 1.26 · 16 + 1.62

Otto: 30 = 20.27 + 1.26 · 10 – 2.84

Ursula: 24 = 20.27 + 1.26 · 2 + 1.22

3 Let us add that in this text we use the same symbol β̂ to denote the random variable (estimator)
and the value of its realization (estimate). Readers can easily distinguish whether it is a number or a
statistic by its context.
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The residual sum of squares is now 12.16 (1.622 + (−2.84)2 + 1.222) and as expected

it has dropped significantly from the original value of 100. As evident in the above-

mentioned properties of the least squares method, there is no pair of values β̂0 and β̂1

that finds a lower value of RSS than 12.16 for our data.

2.2 Unstandardized regression coefficients

The parameters β0, β1 to βk are referred to as standardized regression coefficients, or less

precisely as regression weights. To understand the results of the linear model, it is crucial

to understand their meaning thoroughly.

Each of the parameters β1 to βk belongs to one regressor (X1 to Xk). The value of the

unstandardized regression coefficient shows us how much the size of the dependent

variable Y changes on average when the value of the respective regressor

increases by one (while other regressors remain unchanged). In our example, we arrived

at the result that β̂1 = 1.26 which can be translated into a more understandable statement

for each hour of preparation, students receive on average approximately one and a quarter

points more. If we found a weight of a regressor is equal to zero, it would mean that

regardless of the change in the value of the regressor, the average value of the dependent

variable does not change (i.e., the regressor has no effect).

The parameter β0 does not belong to any regressor (or rather it belongs to that

mysterious column of ones in the design matrix). We refer to this parameter as the

absolute term, constant or intercept. The intercept tells us what value the

dependent variable Y will take on average if all regressors are equal to zero.

Thus, in our example where β̂0 = 20.27, this would mean that a completely untaught

student who has spent zero hours revising for the test would score an average of just over

20 on the test.

Understanding the regression coefficients allows us to answer questions like how many

points are we likely to get if we only have the night before the exam to prepare for it, say 6

hours from 10pm to 4am. The answer would be 28 points. More precisely, 20.27+1.26·6 =

27.81 points. This sounds fairly optimistic if the threshold for passing the exam is, say, 25

points and we have confidence in our model which, as we will see below, is not particularly

appropriate in this case. So, we better start studying earlier rather than pulling an all-

nighter the night before the test.

2.3 Standardized regression coefficients

In some circumstances, the unstandardized regression coefficients alone may not provide

easy-to-understand information to the reader. Imagine, for example, that you are con-
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ducting marketing research to map how satisfied users are with the quality of their internet

connection. You collect data including a satisfaction rating from each user – a number

between one (extremely dissatisfied) and ten (extremely satisfied), also how much they

pay for the service monthly, how many connectivity outages longer than 5 minutes oc-

cur each month, and finally, how fast the connection is. Moreover, the connection speed

measured in kilobits per second (Kbps) was converted to a decadic logarithm scale (i.e.,

1 Kbps was coded as 0, 10 Kbps as 1, 100 Kbps as 2, etc.). The resulting unstandardized

regression coefficients might look something like this:

Regressor β̂

Intercept 3.950
Price (e per month) −0.050
Outages (occurrences per month) −0.140
Speed (log10 Kpbs) 0.862

Probably even if we tried our best, we would not be able to use the table to determine

which factor has an considerable effect on customer satisfaction and which does not. We

can draw conclusions such as “for every euro paid per month, satisfaction decreases by 0.05

points” or “with every outage, customer satisfaction decreases by 0.14 points”, but we can

hardly say whether these effects are major or minor. Not to mention that interpretating

the 0.862 weight of the connection speed regressor will be quite difficult.

This is exactly the situation in which we use standardized regression coefficients.

Standardized regression coefficients are obtained by exactly the same procedure as non-

standardized coefficients, except for one difference: before performing the calculation, we

convert the dependent variable as well as each regressor into z-score form. The z-score

transformation means that we subtract the arithmetic mean from each value of a given

column of the data matrix and then divide each value by the sample standard deviation

of that column. Thus, if the average customer satisfaction rate is 5.5 and the sample stan-

dard deviation of satisfaction rate is 2.5, then if someone responded that their satisfaction

rate is 4, the value of their satisfaction z-score would be −0.6 (since (4−5.5)/2.5 = −0.6).

The advantage of the z-score transformation is that all variables are projected onto the

same scale. So, it does not matter if we measured the price in euros or cents, for example,

we always get the same result. The unit of all regressors becomes one standard deviation.

The standardized regression coefficient expressed by how many standard de-

viations will the value of the dependent variable Y increase on average if the

value of the respective regressor increases by one standard deviation. In this

text, the standardized regression coefficients will be referred to by the β∗ symbol.
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We can also calculate the standardized coefficients from the unstandardized ones by

multiplying the β weight by the standard deviation of the regressor and dividing by the

standard deviation of the dependent variable. Thus

β̂∗ =
σ̂X

σ̂Y

β̂

The following table reports the results of our model including standardized regression

coefficients:

Regressor β̂ β̂∗

Intercept 3.950
Price (e per month) −0.050 −0.172
Outages (occurrences per month) −0.140 −0.463
Speed (log10 Kpbs) 0.862 0.351

Standardized regression coefficients can be used to compare the effect size of individual

regressors, even across different models. Here we can say that the number of internet

outages has the strongest effect on customer satisfaction and the price of the service plays

the least significant role. We could also state, for example, that if the number of outages

increases by one standard deviation, customer satisfaction rate drops on average by nearly

half a standard deviation.

Note that the standardized regression coefficient for the absolute term is missing from

the table and we will probably see the omitted field in the output of any type of statistical

software. This is a consequence of the fact that β∗
0 always equals 0. That is to say, if we

have observed the average values of all regressors (i.e., the z-scores of all regressors equal

0), then we expect the value of the z-score transformed dependent variable to be average

as well (i.e., 0).

Since standardized regression coefficients almost always come out in the range [−1; 1],

they can be interpreted in a similar way to the Pearson correlation coefficient. Moreover, if

a given regressor is perfectly uncorrelated with all other regressors within the model, then

the standardized regression coefficient exactly equals the value of the Pearson correlation

coefficient. If we were talking about a simple regression, then always β̂∗
1 = rX,Y , since the

single regressor in the model naturally cannot correlate with any other regressor.

Standardized regression coefficients are quite popular in psychology, however, there are

some fields where this kind of indicator is practically never used. For this reason, regression

coefficients tend to be labeled differently in different fields – while texts by statisticians

denote non-standardized and standardized coefficients (as does this textbook) β and β∗,

in psychology texts we most often see b and β. As clearly illustrated here:
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Regression coefficient In statistics In psychology

Unstandardized β b
Standardized β∗ β

It should be noted that standardized regression coefficients are not useful in every

scenario. If we decide which set of coefficients to present, then a simple rule of thumb

applies: present those coefficients that, for a given model, will help readers understand

the results. If in a given case both types of coefficients fulfill this role, then it is probably

the best decision to present both sets of coefficients.

2.4 Graphical representation of simple regression

The advantage of simple regression is that we can represent it graphically. By plotting

the measured values on a scatter plot, where the x and y axes correspond to the random

variables X and Y , we can display the fitted model as a regression line. See the Figure

2. This is a graphical representation of the test results of Agatha, Otto and Ursula and

five other classmates of theirs. The estimate of the parameter β0 equals 22.00 and the

estimate of the parameter β1 equals 1.46.

The filled points show the observed values of the dependent and independent random

variable. Blank points indicate the expected values of the variable Y using our model

(labeled Ŷ ). We also refer to them as fitted values or predicted values of the observed

variable. The expected values lie on the regression line defined by the equation of our

model, i.e., Ŷ = β̂0 + β̂1X. The differences between the observed and expected values of

the dependent variable are the residuals we are already familiar with (illustrated by red

lines in the graph). The red areas then represent the squared residuals. Thus, the sum of

the red areas is RSS, which we seek to minimize with the least squares method.

Also, note the location of β0 – it marks the point where the regression line intersects

the y axis. The parameter β1 indicates the slope of the regression line. If it is positive,

the line increases, if it is negative, it decreases. If the variable Y was independent of X,

then the regression line would be horizontal4.

The residuals of linear models have a property that has been already discussed in the

context of the arithmetic mean in basic statistics courses. The overall magnitude of the

residuals for observations above the regression line is the same as for observations below

the regression line except for their sign. Thus, the sum of all residuals is always zero.

4 The relationship between the value of the parameter β1 and the angle between the regression line
and the x axis (labeled α) can be expressed as β1 = tan(α).
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Figure 2: Graphical representation of simple regression
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3 Model quality indicators

At the beginning we discussed that statistical models try to propose the most accurate

simplification of reality. When we estimate the parameters of the model, we can ask how

accurately our model replicates reality. For example, in the previous chapter, we worked

with a model that supposes that, with a certain amount of simplification, the number of

points students receive on a test is determined solely by the number of hours they spent

studying, and that this relationship is linear (i.e., for every hour of studying, we are given

β1 points). It is probably reasonable to assume that the amount of time spent studying

is one of the main factors that affects test scores, but have we not oversimplified reality?

To what extent does our model correspond to reality? We will use indicators of model

quality in our search for an answer to this question.

We have already been introduced to the residual sum of squares, which somehow

quantifies how major the errors of models are; how much it differs from reality. Under

certain circumstances, therefore, RSS could be used as a measure for model accuracy.

However, we do not usually use it in this way for two reasons. RSS depends on the

number of observations (n), so if we have many observations, then we usually get a higher

RSS than if we have only a few of them. The second property that may bother us is that

RSS depends on the scale of the dependent variable.

A more useful indicator is residual variance. It simply represents the sample variance

of the residuals of our model. Compared to the usual procedure for calculating variance,

the only difference here is that the number of degrees of freedom is not n− 1, as we are

used to, but generally n− p, where p is the number of estimated parameters. Therefore

S2
ϵ =

1

n− p

n∑
i=1

(Yi − Ŷi)
2 =

1

n− p

n∑
i=1

ϵ̂2i =
RSS

n− p

In a simple regression, we use n− 2 degrees of freedom for the calculation since we have

to estimate two parameters (β0, β1). Sometimes we also encounter the square root of the

residual variance Sϵ, the residual standard deviation (also called the residual standard

error).

In many cases, the residual variance or standard deviation is a useful indicator of

model quality. However, it is not suitable, for example, for comparing different models

from different studies, as it depends on the unit of measurement. This issue can be

overcome by far by the most popular indicator of model quality, which is the coefficient

of determination R2. The coefficient of determination can be calculated in several ways.

For example, it can be derived from RSS by standardizing it and subtracting it from one:

R2 = 1− RSS

SSY
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where SSY is the sum of squares of the dependent variable, i.e.,
∑n

i=1(Yi − Ȳ )2. Another

way of understanding the coefficient of determination is the square of the Pearson corre-

lation coefficient between the dependent variable Y and its fitted (i.e., estimated) values

Ŷ . The coefficient of determination takes any value between zero and one.

The coefficient of determination is favorable for its universal use – it can be used to

compare models regardless of their scale or sample size. Moreover, it can be interpreted

very intuitively as the percentage of explained variance of the dependent variable.

Therefore, if R2 equals 1.0, we can perfectly predict values of the Y variable from the

values of the X variables. If R2 equals 0.5, it means that we can explain 50 % of the

variance of Y . The remaining 50 % then accounts for the factors we did not include in

our model, along with the measurement error of the Y variable.

Despite its excellent properties, R2 has one weakness. If we add another regressor to

the model, the value of R2 increases. Even if the new regressor is completely meaningless,

the percentage of explained variance never decreases. In the most extreme case, it may

stay the same, but in practice it will always increase due to random variation – the

fewer observations we have, the larger the random variation, and each additional (albeit

meaningless) regressor explains that much more of the variance. So, if we include a large

number of regressors in the model and have a relatively small set of observations, the

coefficient of determination starts to rise to unrealistically high values5.

This problem can be overcome by adjusted coefficient of determination R2
adj. which

takes into account the number of estimated parameters:

R2
adj. = 1− S2

ϵ

S2
Y

= 1− RSS

SSY

· n− 1

n− p
= 1− (1−R2) · n− 1

n− p

However, values obtained using this method do not have such a straightforward inter-

pretation (in the extreme case it may even be negative), so it is convenient to present it

together with the original R2. When presenting a linear model, we generally always use

the R2 indicator. If the reader might suspect that there is an overestimation of R2 due

to the high number of estimated parameters, then it is appropriate to present R2 as well

as R2
adj..

Let us show an example of calculating model quality indicators on the data from

Agatha, Otto and their classmates. Table 1 contains the values that were used to construct

the plot in Figure 2.

5 In an extreme case where the number of estimated parameters is the same as the number of observa-
tions (n = p), R2 is always equal to 100 % regardless of which dependent or independent variables have
been selected.
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Table 1: Values of observed variables, predictions and residuals

Student
hours studying

X
points
Y

prediction

Ŷ

residual
ϵ

residual squared
ϵ2

Agatha 16 42 45.38 −3.38 11.46
Otto 10 30 36.62 −6.62 43.76
Ursula 2 24 24.92 −0.92 0.85
Boris 11 53 38.08 14.92 222.70
Ivanka 24 54 57.08 −3.08 9.47
Anastasia 20 48 51.23 −3.23 10.44
Nela 13 35 41.00 −6.00 36.00
Rosemarie 21 61 52.69 8.31 69.02

The least squares method applied to data from eight students gives us parameter

estimates of β̂0 = 22.00 and β̂1 = 1.46. For each student, we substitute value Xi into the

equation Ŷi = 22.00 + 1.46 · Xi to obtain the fitted values, i.e., the predicted values of

the dependent variable. The residuals are calculated as the differences between the actual

and fitted values of the dependent variable, i.e., ϵi = Yi − Ŷi. RSS is then obtained as the

sum of the squares of the residuals:

RSS = 11.46 + 43.76 + 0.85 + 222.70 + 9.47 + 10.44 + 36.00 + 69.02 = 403.69

It is difficult to judge by eye whether a value of over four hundred is a lot or a little.

The estimate of the residual variance S2
ϵ is slightly more informative:

S2
ϵ =

RSS

n− p
=

403.69

8− 2
= 67.28

and in particular the residual standard deviation Sϵ:

Sϵ =
√
67.28 = 8.20

The standard deviation of the residuals is therefore just over eight points. This already

helps us to get a picture – if we predict how someone will perform according to our model,

we can expect errors of, say, 5 or 10 points, but we can practically rule out the possibility

that the model would be wrong by, say, 30 or 50 points.

In order to decide more accurately whether the 8.2 points are a lot or a little, we need

to examine the variance of the dependent variable Y . We calculate the average number of

points Ȳ = 43.38 and use it to determine the sum of squares SSY =
∑8

i=1(Yi − 43.38)2 =

1163.88. After dividing by n − 1 degrees of freedom, we obtain the sample variance of

the variable Y , S2
Y = 166.27, or its standard deviation of

√
166.27 = 12.89 points. This
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can be interpreted as if we did not know how long each student had been studying, and

thus we expected an average score for each student (43.38), our predictions would have a

standard deviation of 12.89. If we use the information about the time spent studying to

make the prediction, the standard deviation of the errors drops to 8.20 points, which is a

reasonably satisfactory result.

The most informative indicator is nonetheless the coefficient of determination R2:

R2 = 1− 403.69

1163.88
= 0.65

Thus, we can say that we were able to explain (describe, predict) 65 % of the variance

in the number of points students receive on the exam using information about their time

spent studying. In contrast, error variance accounts for the remaining 35 %. This covers

all the influences that we did not include in the model (e.g., prior knowledge, learning

ability, test inaccuracy, copying...).

If we suspect that our result is overestimated due to the small number of observations

(n = 8) relative to the number of estimated parameters (p = 2), we calculate the adjusted

coefficient of determination R2
adj.:

R2
adj. = 1− 67.28

166.27
= 0.60

It can be seen that there has been some change and we should probably point out to the

reader the possible influence of the limited sample size.

The question is what value of R2 we can be satisfied with and which one we should

consider insufficient. Unfortunately, the answer is not straightforward and depends on the

purpose of our model. For example, if you come up with a shocking claim that in adult

population there is a parasite spreading widely and it lowers the IQ of its host, then even

a model whose R2 is barely 3 % will make the newspaper headlines. On the other hand,

if you try to argue that the results of the school leaving exams are a good indicator of

a student’s abilities and that they can predict their academic success at university, then

you will not find R2 values below 30 % satisfactory. Finally, if the model covers physics

or some of the technical disciplines, then models with R2 below 99.9 % will not be worth

attention at all (let us add that in this case we will probably reach for another indicator

of accuracy, probably the familiar residual standard deviation).
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4 Models with multiple regressors

Everything we have learned in the previous pages applies not only to single regression, but

also to models with multiple regressors. However, unlike simple regression, more complex

models cannot usually be represented by a regression line in a scatter plot, so we need

to understand the relationships between the variables using only the values provided by

statistical software. It is therefore useful to be able to imagine what the relationships

between the independent variables might look like and how this will be reflected in their

regression weights.

Imagine the variance of the dependent variable Y and the independent variable X as

two circles.

Y X

The two variables share part of the variance, therefore the circles overlap. Using the

X variable we could therefore explain part of the variance of the Y variable. In this case,

the overlap is 25 % of the area of the circle, so R2 = 0.25. Since we know that in the

case of a simple regression, R2 is equal to the square of the Pearson correlation coefficient

between the variables X and Y , or the square of the standardized regression coefficient

β∗, since rXY = β∗ =
√
R2 = 0.5.

Let us add another regressor to the model, X2.

Y X1X2

The figure shows that this regressor also shares 25 % of the variance with the Y vari-

able. Regressors X1 and X2 are not correlated (share no variance) and thus their circles

do not overlap. Even in this case, we can easily estimate the values of the coefficient of

determination and the regression weights. If regressor X1 explains 25 % of the variance
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and regressor X2 explains another 25 % of the variance, then R2 = 0.5 since the model

can explain a total of a half of the variance of the dependent variable. Let us add that

the correspondence between the standardized regression weights and Pearson correlation

coefficients between the regressors and the dependent variable also applies here. Further-

more, in the case of uncorrelated regressors, it is also true that the sum of the squares

of the standardized regression coefficients is equal to the coefficient of determination:

0.52 + 0.52 = 0.25 + 0.25 = 0.5.

In reality, however, we most often encounter a third case, where regressors share part

of the variance not only with the dependent variable but also among themselves:

Y
X1

X2

Again, X1 overlaps Y by one quarter and the same is true for X2. This time, however,

the two regressors are correlated and the part of the variance that can be explained by

X1 can be explained as well with X2. The coefficient of determination will obviously

be lower than the original 50 %. The figure also shows that by adding more regressors,

R2 cannot decrease, while it can increase. The question is which regressor is given what

regression weight, i.e., which regressor will be used to describe the variance shared by all

three variables. We cannot use our circle metaphor here – the least squares method will

find the answer – and we would hardly find a reasonable rule that could be described in

words6.

The message we should take from the previous paragraphs is that adding another

regressor will usually change the values of all the other regressors’ weighs in any possible

direction. Usually, this change is desirable – adding another regressor will reduce some

of the error variance and give us a clearer view of what role the independent variables

actually play. Let us illustrate this with an example.

6 Our circle metaphor suggests that R2 never exceeds the sum of the squared coefficients β∗, which
is the sum of the variances that explain each regressor separately. However, this is not true. There is
a situation where the individual regressors are weakly correlated with the dependent variable, but once
they are put into the model together, they explain an unexpectedly large amount of variance. This is,
incidentally, a situation where we may see coefficients of beta∗ exceeding 1. In academic papers, scholars
use the term suppressor variable.
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Let us test a hypothesis that the intense feeling of stage fright that accompanies a

person’s public performance is related to their self-esteem. We could conduct a small

research project for this purpose. We let 20 students present their papers in front of a full

auditorium and use a questionnaire to measure how much stage fright they experienced.

We will also have them complete several questionnaires before the experiment, including

the Rosenberg’s Self-Esteem Scale (RSS) and the Neuroticism scale from the NEO-FFI

questionnaire. The data obtained could look like those in the Table 2.

Table 2: Data: neuroticism, self-esteem and stage fright

Student Neuroticism Self-esteem Stage fright

1 14 39 2
2 22 31 6
3 16 36 2
4 19 32 8
5 24 36 5
6 24 26 6
7 25 23 5
8 26 36 4
9 20 23 4
10 21 28 5
11 30 24 7
12 18 35 5
13 33 22 6
14 24 31 6
15 23 28 5
16 14 29 1
17 30 25 5
18 28 23 10
19 16 37 2
20 21 31 2

If we focus only on the relationship between self-esteem and experienced stage fright,

we are likely to be pleased with the results. After running a simple regression, we find

the following regression weights:

Regressor β̂ β̂∗

(intercept) 10.90
Self-esteem −0.21 −0.50
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The value of the standardized regression coefficient (and hence the Pearson correlation

coefficient) is a satisfying −0.50. We can conclude that this is a moderate to strong

relationship and that the Rosenberg test score and the rating of experienced stage fright

share 25 % of the variance.

If we decide to examine separately the relationship between the neuroticism score and

the ratings of stage fright, we find that a close relationship is obvious here as well:

Regressor β̂ β̂∗

(intercept) −1.16
Neuroticism 0.27 0.64

The correlation coefficient between the two variables is 0.64, and thus the entire 41 %

of the variance of stage fright can be described using neuroticism. Thus, we might believe

that we have found two key factors that are related to the stage fright the participants

experienced. However, we have omitted in our considerations the fact that the constructs

of self-esteem and neuroticism overlap to a large extent. According to our data, the cor-

relation between the two constructs is −0.65. Thus, it cannot be ruled out that both

variables explain the same variance in the stage fright variable. Results of multiple re-

gression confirm this concern:

Regressor β̂ β̂∗

(intercept) 1.50
Neuroticism 0.23 0.55
Self-esteem −0.06 −0.15

The two regressors together can explain 42 % of the variance, just one percent more

than neuroticism alone. The weight of self-esteem is close to zero, while the weight of

neuroticism remains high. The intensity of the stage fright the participants experienced

is dependent on the individual’s neuroticism, while self-esteem has only little impact.

The example might give the reader the impression that multiple regression is a guar-

anteed way to ruin promising results. However, the opposite is true – multiple regression

helps us identify relevant relationships and reinforces our belief that the observed corre-

lation is not an artifact due to a third factor. It is highly desirable to include regressors

such as age of probands and their gender in the model to remove their unwanted influence.

To these regressors that we include in the model to avoid bias, but their influence is not

the focus of our interest we refer to as covariates.
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4.1 Nominal regressors

So far, we have only considered cases where the independent variables X are quantita-

tive. Quite often, however, we need to include in our considerations regressors measured

on a nominal scale, such as the gender of the proband, their assignment to one of the

experimental or control groups, or for example their nationality. We can easily address

this issue in the context of linear models.

To begin with, let us imagine the simplest situation where our model contains a single

independent variable X that is dichotomous. For example, this would be the case where

we are investigating the effect of tetrahydrocannabinol (THC) intoxication on human

reaction time. The design could look like this: we randomly divide volunteers into an

experimental group and a control group. The experimental group will be given a dose of

THC while the control group will be given a placebo. We then use a computer test to

measure reaction times of both groups. The data matrix might look something like this:

Table 3: Data: reaction time and THC

Proband THC RT [ms]

1 0 523
2 0 603
3 0 669
4 0 500
5 0 662
6 0 643
7 1 657
8 1 784
9 1 504
10 1 802
11 1 561
12 1 514

We coded which group an individual belongs to using ones and zeros, where one

indicates the experimental (intoxicated) group. If we want to build a model that describes

the impact of the experimental condition, we surprisingly end up with exactly the same

equation we used in the simple regression:

Y = β0 + β1X

The X variable in this case is called dummy variable and it denotes individuals who

belong to the experimental group with the number one. The computation of the coeffi-

cients of β̂ and all other procedures remain exactly the same as in the simple regression.

The least squares method provides us with these estimates:
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Regressor β̂ β̂∗

(intercept) 600
THC 37 0.19

Not only has the calculation procedure not changed, but the interpretation of the

regression weights also remains the same. The parameter β0 shows what value the de-

pendent variable has on average when all regressors are equal to zero. If our dummy

variable is equal zero, it means that we are talking about an individual from the control

group. Thus, a result β̂0 = 600 means that the average reaction time of people in the

control group is equal to 600 milliseconds. The β1 parameter generally indicates how

many points on average the value of the dependent variable increases when the regressor

value increases by one. In our case, the fact that the value of the regressor increases by

one does not mean anything other than that the individual moves from the control group

to the THC-intoxicated group. Thus, the averages of the two groups differ by 37 ms, from

which we can easily deduce that probands from the experimental group had a reaction

time equal to 637 milliseconds on average.

Interpreting the β∗ coefficient is a bit more difficult. Again, it is the number of

standard deviations by which Y increases when X increases by one standard deviation.

But the standard deviation of a dichotomous variable is not a very meaningful concept.

Therefore, the coefficient β∗ cannot be interpreted very sensibly; however, we can use it

as an indicator of the effect size, perhaps to compare the effects of multiple variables X

with each other.

The situation becomes a bit more complicated when the nominal regressor has more

than two levels. What if we wanted to extend our experiment to other addictive substances

and include a third group intoxicated with a dose of ethanol? Our first idea might be to

label this alcohol group with 2 in the second column of the table. But the results obtained

in this way would be meaningless. It would mean that we are assuming the existence of

nothing-THC-ethanol continuum, where ethanol is twice as high as THC. But in reality,

these are two qualitatively different aspects that we cannot project onto one axis.

The solution is to introduce one dummy variable for THC and another dummy variable

for ethanol. This solution can be seen in the Table 4.
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Table 4: Data: reaction time, THC and ethanol

Proband THC Ethanol RT

1 0 0 523
2 0 0 603
3 0 0 669
4 0 0 500
5 0 0 662
6 0 0 643
7 1 0 657
8 1 0 784
9 1 0 504
10 1 0 802
11 1 0 561
12 1 0 514
13 0 1 677
14 0 1 790
15 0 1 778
16 0 1 723
17 0 1 646
18 0 1 682

The parameter estimates are again obtained without changing the procedure using the

least squares method. The data above lead us to the following results:

Regressor β̂ β̂∗

(intercept) 600
THC 37 0.19
ethanol 116 0.56

Of course, adding another group did not affect the average in the previous two groups

– still the average reaction time in the control group is 600 ms and in the THC-intoxicated

group 600+37 = 637 ms. In addition, however, we obtain the information that our ethanol

intoxicated probands are on average 116 ms slower compared to the control group, so their

average reaction time is 716 ms.

The use of dummy variables can sometimes be somewhat counter-intuitive. Let us

therefore point out a few facts:

� Although we are working with three groups, we have only two dummy variables.

We would find the same relationship for higher numbers; for example, working

with a nominal variable of ten levels, we would include 9 dummy variables in the

model. The tenth, omitted, variable is called reference group and can be chosen

as desired.

28



� The coefficient β̂0 (intercept) is the average value of the variable Y in the reference

group.

� The coefficients β̂1, β̂2, ... show how much each group differs from the reference group.

If we want to compare the groups with each other, we can specify a different factor

level as the reference group.

� If we choose a different reference group, the overall accuracy of the model (RSS, R2)

does not change, but of course the regression coefficients of each group change. For

example, if we choose THC-intoxicated probands as the reference group, we obtain

results that, upon closer examination, lead us to the same group means:

Regressor β̂ β̂∗

(intercept) 637
ethanol 79 0.38
control −37 −0.18

If we include a set of dummy variables in the model, then we are usually no longer

talking about regression, but about a general linear model. Of course, we can include

more than one categorical regressor in the model and they can also be freely combined

with continuous regressors.

Dummy coding is particularly useful when we have a single control group against which

we compare several experimental groups, or when we are working with a dichotomous

variable. If we need to compare several groups, none of which is in any way privileged to

be considered a reference group, this method is not very elegant.

Note also that there is a number of other ways of coding the nominal variable that

lead to different interpretations of the regression parameters. In general, however, they

do not change the overall accuracy of the model.

4.2 Interactions of regressors

The relationship between the independent variables X and the dependent variable Y is

sometimes more complicated than to be described as a weighted sum. A trivial example

is coffee sweetening. If you stir the coffee, it will not be sweet all of a sudden. If you put

sugar in it, the taste will not change either, because the sugar sits at the bottom of the

cup and does not dissolve. So, we would say that neither action affects the taste of the

coffee. But if you do both – put sugar in the coffee and stir it – you get an incomparably

greater effect. The interaction can also work in the opposite way. If we stick to simple

culinary examples, we can model how a pancake tastes depending on what ingredients

we put on it. For example, marmalade or Nutella will definitely enhance the tastiness of
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the pancake. Similarly, cheese or ham will have a positive effect. However, if you add all

these ingredients at the same time, the effects will not add up, but on the contrary, the

tastiness of the resulting product will definitely be in the negative numbers.

Both quantitative and nominal variables can enter the interaction. For now, let us

ignore nominal variables with more than two levels, since it these instances the situation

is a bit more complicated. In all other cases we can include the effect of the interaction

between X1 and X2 by adding interaction term to the regression equation. A model

with k regressors, where the first two regressors interact, would be described by the

following equation:

Y = β0 + β1X1 + β2X2 + β12X1X2 + · · ·+ βkXk

The X1X2 variable is in fact the value of the X1 regressor multiplied by the value

of the X2 regressor. The β12 coefficient then represents the weight of this newly created

regressor. Thus, the actually including the interaction into our model is technically very

straightforward. The greater challenge is to interpret the interaction term correctly. Let

us demonstrate how to work with the interaction on the following exercise.

Rumors are spreading about a professor – he is not at all objective in his examinations,

but grades students on the basis of only one criterion, which is the length of their skirts.

The students decided to verify this suspicion with a linear model. They simply measured

the length of skirts or trousers of anyone who took the exam and wrote the value in

centimeters in a table. They also made a note of whether the person was a man or

a woman, and what grade they were given. Table 5 contains the students’ records at

the end of the examination period. For easier mathematical processing, the grades were

converted to numbers from the best grade A, labeled 1, to the worst grade F, labeled 6.

The idea that grading can be influenced by two factors (the gender of the student and

the length of the skirt or trousers) seems correct at first sight in this context. Therefore,

let us test the students’ assumption using a model with these two regressors

grade = β0 + β1 · gender + β2 · length

which leads to the following result:

Regressor β̂ β̂∗

(intercept) 3.001
gender 0.045 0.015
length 0.006 0.092

R2 1 %
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Table 5: Records of students’ grades and the length of their skirts or trousers

Student Grade Gender Length

1 B (2) 1 104
2 D (4) 0 84
3 B (2) 1 86
4 B (2) 0 48
5 E (5) 1 92
6 A (1) 1 90
7 C (3) 1 95
8 D (4) 0 88
9 E (5) 0 59
10 A (1) 1 101
11 C (3) 0 38
12 E (5) 0 76
13 E (5) 0 82
14 A (1) 0 28
15 B (2) 0 29
16 D (4) 1 59
17 C (3) 1 100
18 A (1) 0 41
19 C (3) 0 48
20 B (2) 0 48
21 E (5) 0 79
22 A (1) 0 33
23 F (6) 0 70
24 C (3) 0 40

Student Grade Gender Length

25 E (5) 1 59
26 D (4) 0 80
27 B (2) 0 21
28 D (4) 0 70
29 C (3) 1 99
30 E (5) 1 52
31 C (3) 0 48
32 E (5) 0 89
33 E (5) 0 83
34 C (3) 1 79
35 F (6) 1 30
36 B (2) 0 39
37 B (2) 1 102
38 B (2) 1 100
39 C (3) 0 46
40 E (5) 0 92
41 E (5) 1 91
42 C (3) 0 88
43 C (3) 1 95
44 C (3) 1 80
45 F (6) 1 41
46 B (2) 0 41
47 F (6) 1 52

Men are coded 1, women 0. The length of the skirt or trousers is in centimeters.
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We can easily interpret the estimated weights of both regressors. Men, labeled with

one, receive a 0.045 grade (i.e., about one-twentieth) higher (i.e., worse) than the reference

group of women. For every centimeter of skirt length, the grade increases (worsens) by

0.006 degrees (i.e., about one hundred and seventy-seventh). At first glance, it is obvious

that we are talking about virtually zero effect. The regressors explain approximately 1 %

of the variance of the observed variable.

Was it really a false accusation and do we owe the accused professor an apology?

Before we accept that conclusion, let us think a little more closely about what our model

says. A graphical representation of the model as a regression line will help. Since we

know that the regressor gender takes the value 0 for all women and 1 for all men, we can

look at what the model says about men and women separately simply by substituting the

gender regressor with a corresponding value (0 or 1).

In the case of women (gender = 0):

grade = β0 + β1 · gender + β2 · length

grade = β0 + β1 · 0 + β2 · length

grade = β0 + β2 · length

grade = 3.001 + 0.006 · length

In the case of men (gender = 1):

grade = β0 + β1 · gender + β2 · length

grade = β0 + β1 · 1 + β2 · length

grade = (β0 + β1) + β2 · length

grade = (3.001 + 0.045) + 0.006 · length

grade = 3.046 + 0.006 · length

Both regression lines have the same slope (0.006) and differ only in the vertical dis-

placement (the intercepts are equal to 3.001 and 3.046). The similarity of the two lines

can be seen in Figure 3.
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Figure 3: Inadequate model without an interaction term

Many readers are probably already aware of the mistake we made in the specification

of the model. The length of skirt or trousers has a somewhat different impact depending

on whether we are talking about a woman or a man. To allow our model to describe

reality more accurately, we need to design it in a way that the weight of the length can

have different values depending on the value of the gender. And this is exactly what we

get by adding the interaction term gender × length.

As mentioned above, in order to include the interaction, we extend the data table by

one more column, where the gender values are multiplied by length values (the first few

rows are given in Table 6). The interaction term is equal to zero for women and to the

value of the length for men since the gender takes values of 0 and 1 only. The procedure

would be the same for the two quantitative regressors as well.
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Table 6: An example of data for a model with an interaction term

Student Grade Gender Length Interaction

1 B (2) 1 104 104
2 D (4) 0 84 0
3 B (2) 1 86 86
4 B (2) 0 48 0
5 E (5) 1 92 92
6 A (1) 1 90 90
7 C (3) 1 95 95
8 D (4) 0 88 0
9 E (5) 0 59 0
10 A (1) 1 101 101
...

...
...

...
...

Our model with interaction takes the following shape:

grade = β0 + β1 · gender + β2 · length + β3 · gender · length

and after recalculation it leads to these values of parameter estimates:

Regressor β̂ β̂∗

(intercept) 0.260
gender 7.759 2.539
length 0.052 0.853
interaction −0.109 −3.038

R2 63 %

Before discussing the drastic increase in the explained variance of the dependent vari-

able, let us consider what the individual unstandardized coefficients of the model with

interaction imply. Again, it helps to examine the model separately for men and women.

In the case of women (gender = 0):

grade = β0 + β1 · gender + β2 · length + β3 · gender · length

grade = β0 + β1 · 0 + β2 · length + β3 · 0 · length

grade = β0 + β2 · length

grade = 0.260 + 0.052 · length
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In the case of men (gender = 1):

grade = β0 + β1 · gender + β2 · length + β3 · gender · length

grade = β0 + β1 · 1 + β2 · length + β3 · 1 · length

grade = (β0 + β1) + (β2 + β3) · length

grade = (0.260 + 7.759) + (0.052− 0.109) · length

grade = 8.020 − 0.056 · length

The β0 and β2 parameters can be interpreted as the intercept and slope of the regression

line in the reference group of women. The β1 and β3 parameters tell how much the origin

and slope differ in the group of men compared to the reference group of women. Note that

β1 and β3 are not the values of the intercept and slope of the regression line for men! The

origin for men is β0 + β1 and the slope of the regression line is β2 + β3. This is probably

the most common mistake students make when working with interactions.

Let us compare the regression lines in Figure 3 with the lines in Figure 4. As one

can observe, for every 20 centimeters of skirt length, women’s grades on average worsen

by approximately one level (more precisely by 0.052 · 20 = 1.045 levels), while for men

every 20 centimeters of trousers length improves the grade by approximately one level

(−0.056 · 20 = −1.125 levels).

Was the students’ concern justified? In this case, R2 = 63 % is extremely high. The

result basically proposes that almost two-thirds of the variance in grades depends on

whether the examinee is a man or a woman and what they are wearing. The remaining

one-third of the variance is then crammed with all the other influences, such as knowledge,

which should be the main factor.

As mentioned several times before, any type of variable can enter the interaction.

If we wanted to examine the interaction of a nominal variable with more than two levels,

we would have to create an interaction term for each dummy variable that we derived

from the original nominal variable. Thus, to calculate the interaction between a nominal

variable with three levels and a nominal variable with four levels, we would need to create

6 ( = (3− 1) · (4− 1)) interaction terms.

Higher order interactions can be created analogously – to multiply more than two

variables together. However, in the case of two variables, interpretation is often difficult

already, and in the case of three or more variables, it is usually almost impossible.

When analyzing interactions, it makes no sense to include standardized regression

coefficients β∗ in our considerations, as they provide virtually no relevant information.
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Figure 4: Model with interaction term

4.2.1 Centering of regressors

When describing the results of the previous example, the interpretation of the intercept

β0 and the weight of the regressor gender was avoided. Both weights have their interpre-

tations, although, as we will see, in our case they are not very meaningful. The intercept

β0 informs us what value the dependent variable keeps when all regressors are zero. Thus,

it is the average score of a woman (gender = 0) whose skirt is 0 cm long. This scenario is

still conceivable with a little imagination, but the value 0.26 itself is no longer meaningful

(it is a grade three-quarters of a level better than A).

The weight β1 describes an even more bizarre situation: it is the difference between an

average grade of a woman without a skirt (length = 0 cm) and a man without trousers.

The value between a 7 and an 8 (β1 = 7.759) is again meaningless, given that the grades

have only 6 levels.

We can come across similar meaningless weights quite often when working with linear

models. And it does not have to be only models with an interaction term, although this

situation is typical for them. Let us imagine that we predict the wage using IQ of an

individual. The intercept will then be the average wage of a non-existent person who has

an IQ of zero. When we include age in the model, the intercept will represent the salary

of a newborn baby, and so on.
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All of the situations described above are correct from a mathematical point of view,

but it is hard to deny that they contradict common sense. To avoid such absurdities, it

is worth to master centering of regressors.

Centering the regressor means that we calculate its arithmetic mean and subtract it

from the value of the regressor in every observation. If we wanted to center the length

of the skirt or trousers in the previous example, we would calculate the average length,

which equals 67.979 cm, and subtract this value from all lengths. So, the variable length

no longer gives the absolute length, but how much the length differs from the average

length of the skirt or trousers in our sample. The new form of the data matrix is shown

in the Table 7. The estimates of the regression weights of the model change as follows:

Regressor β̂ β̂∗

(intercept) 3.812
gender 0.384 0.126
length 0.052 0.853
interaction −0.109 −1.135

R2 63 %

Table 7: Example of a centered regressor

Student Grade Gender Length Interaction

1 B (2) 1 36.021 36.021
2 D (4) 0 16.021 0
3 B (2) 1 18.021 18.021
4 B (2) 0 −19.979 0
5 E (5) 1 24.021 24.021
6 A (1) 1 22.021 22.021
7 C (3) 1 27.021 27.021
8 D (4) 0 20.021 0
9 E (5) 0 −8.979 0
10 A (1) 1 33.021 33.021
...

...
...

...
...

Centering the regressor does not change the accuracy of the model or the

predictions provided by the model. The slopes of the regression lines remain the

same. Only the value and interpretation of the β0 and β1 weights have changed. The

intercept still indicates, on average, what value of the dependent variable we get if all

regressors are equal to zero. But since the regressor length is centered, a zero value means

that we are talking about an average skirt length. The weight β1 then quantifies the
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difference in the expected grade between a man and a woman who have average-length

trousers or skirt, respectively.

If we center the IQ regressor, the intercept will refer to a person with average intelli-

gence, if the age regressor, then to an average aged person, etc. We do not have to use

the arithmetic mean, but any other constant (although this is not centering in the true

sense of the word). For example, we could have used the number 70 instead of the average

67.979 cm, or even centered men and women separately by their group averages. None

of these steps would change the results the model gives us. It will, however, change the

values and interpretations of the regression coefficients involved.

There is usually no point in centering dichotomous variables. If our model involves

the interaction of two quantitative variables, centering them is almost always a necessity

if we are looking for understandable results.

4.3 Exploring non-linear relations

Common knowledge, we are all familiar with from basic statistics courses, says that the

Pearson correlation coefficient describes only the linear relationship between the variables

of interest. The regression lines we have worked with in previous chapters also have this

property. In practice, however, we often encounter situations where there is different than

a linear relationship between the variables of interest.

Let us imagine that we are working with two variables from the scatter plot in Figure

5. There is obviously a close relationship between these variables. However, if we try to

describe this relationship using a simple regression model, we fail to detect it.

Regressor β̂ β̂∗

(intercept) 4.484
variable X 0.012 0.026

R2 0 %

In fact, the linear model can describe a wide range of non-linear relationships, but we

have to adjust the regressors accordingly7. In psychology, when we talk about a nonlinear

relationship, in the vast majority of cases we mean a quadratic relationship. This assumes

that the dependence is parabolic – it resembles the letter U (or

U

), or some part of it.

7 It is a fairly common belief that the word linear in the name of the model is somehow related to
the type of relationship between X and Y . However, this is a misunderstanding – the word linear means
that the dependent variable is modeled as a linear combination (i.e., a weighted sum) of regressors, with
the model parameters as weights.
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Figure 5: Data incorrectly fitted with a line

To describe a quadratic dependence, we need to add a given regressor in the second

power to the model:

Y = β0 + β1X + β2X
2

In practice, we make this change by adding a new column to the data table that contains

the squared values of the original regressor. Table 8 contains a few rows of the data matrix

modified in this way. The next steps of the calculation are identical to the procedure we

are already familiar with. The data from Figure 5 will lead us to the following parameter

estimates.

Regressor β̂ β̂∗

(intercept) −0.012
variable X 2.004 4.371
variable X2 −0.200 −4.449

R2 92 %
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Figure 6: Data fitted with a quadratic function

Table 8: Example of data for quadratic dependence modelling

Y X X2

13.2 1.5 2.25
21.2 3.0 9.00
21.4 3.2 10.24
23.6 4.0 16.00
24.4 4.2 17.64
25.3 4.8 23.04
24.8 5.5 30.25
24.3 5.7 32.49
23.7 6.0 36.00
16.9 7.8 60.84
10.4 8.8 77.44
...

...
...

Fitting the data with a parabola gives a satisfactory result in our case. It is not only

the high value of the coefficient of determination, but also the plot in Figure 6, which

shows our estimated parabola, that give us the confidence.

When we model the effect of a regressor as quadratic, the regression weights lose their

elegant interpretations. The standardized regression coefficients do not help us interpret
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them at all (note that in our example they came out at absurdly high values), and even the

non-standardized ones provide only limited insight. The coefficient β of the regressor X2

indicates whether the curve is U-shaped (positive values) or

U

-shaped (negative values).

If the weight of the quadratic regressor is close to zero, it means that the

dependence is linear and it was unnecessary to include the regressor in the

model. The coefficient of the regressor X provides even less relevant information. If its

value is close to zero, it means that the parabola has its peak (or bottom) horizontally

located near 0. Values different from zero indicate a shift to the left or right (if both

coefficients have the same sign, to the left, otherwise to the right). But this information

is usually of no use.

4.3.1 Other non-linear relationships

In psychology, we are usually satisfied with linear relationships, rarely applying quadratic

ones. However, linear models in fact allow us to model any other relationship that we

are able to describe as a weighted sum of some regressors or combinations of regressors.

For example, we could add an X2 regressor to the equation along with an X3 or even an

X4 regressor, and what is more, we can model exponential dependence, absolute value

functions, goniometric functions, etc.

As an example of an interesting use of this range of possibilities, let us mention the

modeling of a sine function curve. This kind of dependence is typically encountered when

the regressorX denotes time and the dependent variable Y indicates the values of an event

that took place at different times. The sinusoid indicates that the values of the Y variable

rise and fall repeatedly, and that this pattern always has the same length corresponding

to a certain period. Assuming that we know this period, we need to determine the values

of two other parameters: the amplitude (the amount of fluctuation) and the horizontal

displacement (i.e., the time at which the first observed cycle begins).

The following formula can be used to describe this kind of dependency:

Y = β0 + β1 · sin
(
2π

s
X

)
+ β2 · cos

(
2π

s
X

)
where s is the length of the period – so if the values of the regressor X were defined in

months and the cycle was defined by a period of one year, then s = 12. A suitable use of

this model is presented in Figure 7.

Note that the estimated regression weights cannot be directly interpreted as amplitude

and displacement. However, we can calculate these values: amplitude ρ =
√

β2
1 + β2

2 and

displacement θ = arcsin β1

ρ
= arccos β2

ρ
. The model can then be redescribed into a more

understandable form Y = β0 + ρ cos(2π
s
X − θ).
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Figure 7: Data fitted with the sine function
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5 Tests of statistical significance

Basic statistics courses have taught us that any descriptive statistic is only an estimate

of the parameter of interest, not its exact value. For example, when in a previous chapter

we calculated that the average reaction time of six randomly selected subjects was 600

ms, this does not mean that any random people in fact have an average reaction time of

exactly 600 ms. If we were to repeat the experiment on different examinees, we might

get a value of 558 or 613, for example. The arithmetic mean is a statistic – an estimator

designed to approximate as accurately as possible the true value of the parameter of

interest.

In linear model framework, all regression weights β̂0, β̂1, ..., β̂k act as estimators. Al-

though their values vary among different groups of the subjects, we know that they

fluctuate around some unknown but invariant values β0, β1, ..., βk. If we had an infinitely

large set of observations, our estimates would be perfectly accurate8.

Similarly, we can imagine that the coefficient of determination R2 is an estimate of a

parameter which we could label ρ2 and whose value would again only be known if we were

working with a hypothetical infinite sample. Similarly, the residual variance S2
ϵ mentioned

earlier is an estimate of the true, though unknown to us, value of σ2
ϵ .

As we are used to from basic statistics courses, we can formulate hypotheses about

the parameters and test their validity with statistical tests. We can also apply previously

acquired knowledge about test statistics, p-values, null or alternative hypotheses in the

context of linear models. The only noticeable difference is that this time we will not have

to learn dozens of different statistical tests, but we will suffice with a single statistical test

to evaluate any hypothesis: the submodel test.

5.1 Submodel test

A submodel is a statistical model that was created from an original model by dropping one

or more regressors or by constraining the weights of the regressors. Let us now consider

only the first of these possibilities, since the topic of models with constraints is not covered

in this textbook. For example, consider a linear model with three regressors defined by

the equation

Y = β0 + β1X1 + β2X2 + β3X3.

8 Non-standardized regression weights have a number of useful properties as estimators. They are the
minimum-variance unbiased estimators of the β parameters. As the sample size increases, they reduce
their variance and thus become more accurate. Therefore, we can call them weakly consistent.
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We can define for example the following submodels to this model:

Y = β0 + β2X2 + β3X3

Y = β0 + β1X1

Y = β1X1 + β2X2 + β3X3

or possibly a submodel without any regressors at all:

Y = β0

For any model or submodel, we can see how closely it fits the observed data. For

this purpose, we can use the coefficient of determination R2 derived from RSS. We can

expect that if we remove one or more regressors from the model, then R2 will decrease

(RSS will increase) as the model loses its accuracy. The more significant regressors were

removed, the more noticeable is the decrease in R2. Conversely, if R2 remains unchanged

after removing the regressors, this means that the removed regressors are redundant in

the model – their regression weights are zero. This is the essence of the submodel test.

The submodel test evaluates the validity of the null hypothesis ρ2model = ρ2submodel

which is equivalent to the statement that the weights of the removed regressors

were all zero.

The test statistic that will help us decide the validity of this hypothesis can be derived

from three properties that RSS has. Let us add that these properties are valid only under

a few assumptions which we will address in section 7, for now let us consider them met.

� If we estimate p regression weights using n observations, then the RSS
σ2
ϵ

statistic has

a chi-square distribution with n− p degrees of freedom. We write RSS
σ2
ϵ

∼ χ2
n−p.

� If the true value of the regression weights of the regressors we removed from the

model is zero (i.e., the null hypothesis holds), then RSSsubmodel −RSSmodel

σ2
ϵ

∼ χ2
h, where

h is the number of parameters removed, i.e., the difference in degrees of freedom of

the model and submodel.

� The statistics RSSmodel and RSSsubmodel −RSSmodel are independent of each other.

The Fisher probability distribution is defined as the proportion of two independent

random variables with χ2 distributions each of them divided by its degrees of freedom.

Therefore, we can construct a random variable

F =

RSSsubmodel −RSSmodel

dfsubmodel−dfmodel

RSSmodel

dfmodel
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where df denotes the number of degrees of freedom (df = n−p); which has under the null

hypothesis Fisher distribution with degrees of freedom corresponding to the denominators

of the two fractions, i.e., dfsubmodel − dfmodel and dfmodel. Many readers prefer R2 to RSC

in the computation, so let us introduce an equivalent shape of the F statistic based on

the coefficient of determination:

F =

R2
model−R2

submodel

dfpodmodel−dfmodel

1−R2
model

dfmodel

Of course, both versions of the formula lead to identical results. We can simplify the

statistics even further by noting that the number of degrees of freedom of the model

and submodel differ by the number of dropped parameters in the submodel. Thus, if we

created the submodel by omitting a single parameter, then dfsubmodel − dfmodel equals one,

if we left out two parameters, then two, and so on. If we label the number of dropped

parameters h and the difference of the coefficients of determination of the model and

submodel by ∆R2, then the F statistic for the submodel test can be written in the form:

F =
∆R2

h
1−R2

model

n−p

∼ Fh, n−p

In general, we can say that the submodel test evaluates the validity of the null

hypothesis that removing one or more regressors does not decrease the per-

centage of explained variance of the dependent variable.

How do we use the submodel test in practice? We typically test the following sub-

models:

� A submodel created by removing a single regressor with weight βj. The null hy-

pothesis states that the model explains the same amount of variance whether or not

it contains a given regressor. This hypothesis is equivalent to the claim that a given

regression coefficient is equal to zero, i.e., H0 : βj = 0.

� A submodel created by removing all regressors (i.e., Y = β0). Since the submodel

without regressors explains no variance, this test evaluates the validity of a hypoth-

esis that our model explains a non-zero amount of variance at all. Thus, the null

hypothesis could be defined as H0 : ρ
2 = 0.

� A submodel created by removing all dummy variables belonging to one nominal

regressor. This test will allow us to test a null hypothesis that the nominal regressor

does not improve the accuracy of the model and therefore has no relationship with

the dependent variable Y .
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5.2 Wald statistic and confidence interval for regression weight

If we are asking ourselves which regressors in our model have a statistically significant

effect (i.e., their regression coefficients differ from zero), we can imagine that a computer

program runs through all the regressors in the model always removing a given regressor

from the model, calculating R2 for that submodel, then returning the regressor back to the

model, removing another, etc. In fact, the calculation is not conducted in this way. We

use the Wald statistic instead. Wald statistic provides identical p-values to the submodel

test but is computationally less demanding and has several other useful properties.

To construct the Wald statistic, we first estimate the covariance matrix of the re-

gression weights. Recall that the individual estimates of β̂j are random variables and

thus have variances. Moreover, in general they are not independent, therefore for any

two coefficient estimates we can estimate their covariance. The covariance matrix con-

tains precisely this information – it is a square matrix with estimates of the variances of

each regression coefficient on the diagonal (labeled S2
j ) and estimates of the covariances

off-diagonal (labeled Sij):

V̂AR(β̂) =


S2
0 S0,1 · · · S0,k

S1,0 S2
1 · · · S1,k

...
...

. . .
...

Sk,0 Sk,1 · · · S2
k


Estimating the covariance matrix is relatively easy, but again we have to consult matrix

algebra:

V̂AR(β̂) = S2
ϵ (X

′X)−1

When calculating the Wald statistic, we suffice with the diagonal elements of this

matrix, i.e., the variances of the estimates of the regression coefficients. The Wald statistic

T is the ratio of the estimate of the regression weight βj to its standard deviation Sj.

Under the null hypothesis H0 : βj = 0, the Wald statistic has a Student distribution with

n− p degrees of freedom:

T =
β̂j√
S2
j

∼ tn−p

When testing the significance of groups of regressors, the Wald statistic cannot be

used in this shape; however, when testing individual regressors, it is the go-to test. Not

surprisingly, statistical software usually provides the standard deviation (Sj) and the value

of the Wald statistic t to the estimate of each regression weight.
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Again, let us emphasize that the Wald statistic leads to the same results as the corre-

sponding submodel test. We can even notice the relationship between the two statistics:

t2 = F . This corresponds to the relationship between the Student and Fisher distribu-

tions:

t2n−p = F1,n−p

Knowing the standard deviation of the regression weight estimate (the so-called stan-

dard error) also has the advantage of allowing us to generate confidence intervals for

individual regression weights. The estimates of the regression coefficients β̂j ∼ N(βj, σ
2
j )

and the estimate of the variance of the coefficient S2
j ∼ σ2

j

n−p
χ2
n−p are independent. We

can therefore construct a confidence interval for the regression weights analogous to the

confidence interval for the mean that we know from the basic courses:

I1−α = β̂j ± Sj · tn−p;1−α
2

where tn−p;1−α
2
is the corresponding quantile of the Student’s t distribution (α is usually

set to 5 %). The use of interval estimates is a good practice when reporting results, as

it allows the reader to gain a clearer picture of the plausibility of the results than the

p-value alone.9

5.3 Equivalence to bivariate tests

To gain a better idea of the logic of null hypothesis tests, let us demonstrate their use

on simulated data. Imagine a situation when the data obtained from a large population

of elderly people is used to model the decline in memory skills over time. For each

participant, we record their gender, age, highest level of their education, and memory test

score. The data is shown in Figure 8. To be able to interpret the intercepts of our models,

we subtract 60 from the variable age, so that zero corresponds to sixty years of age.

Before proceeding to test the null hypotheses in the context of a model with many

regressors, let us demonstrate a fact that may be surprising to many readers: a lot of

the bivariate tests (i.e., tests of pairs of variables) that we know from basic statistics

courses are actually special cases of the submodel test. We will find that t-tests, analysis

of variance, or Pearson correlation coefficient tests are instances of the same test if we

look at them through the lens of linear models.

9 Confidence intervals can be created not only for individual regression weights, but also for pairs or
larger groups of regressors together. Then we are referring to confidence ellipses or multidimensional
ellipsoids. Since we do not usually use this procedure in psychology, curious readers should consult more
advanced statistical literature.
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Figure 8: Visualisation of data

T-test for two independent samples

Let us suppose we are asking whether men and women in a given population segment

receive equal scores on average in the memory test, ignoring the education and age aspect.

Under normal circumstances, we perform a t-test for two independent samples. In our

particular case, it yields a result of t(298) = −3.708, p < 0.001. But the same hypothesis

can be tested using this model:

Y = β0 + β1 · gender

The Wald statistic of the coefficient β1 exactly matches the t statistic above, and neither

the degrees of freedom nor the p-value change:

Regressor β̂ β̂∗ Statistic p

(intercept) 104.383 t(298) = 90.561 < 0.001
gender −5.644 −0.210 t(298) = −3.708 < 0.001

R2 4.4% F(1; 298) = 13.749 < 0.001

The standardized coefficient β∗
1 corresponds to the value of the point-biserial correla-

tion coefficient between the gender variable and test performance. The effect size measure,

Cohen’s d, would be obtained as the proportion of the difference between the two groups

(β1) by the residual standard deviation σ̂ϵ.
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Test of Pearson correlation coefficient

Similarly to how we tested the significance of the gender regressor in isolation, we

can test whether there is a linear relationship between the age of the examinees and

their performance on the memory test. If we ignore the influence of other factors –

gender and education – we would probably use Pearson’s correlation coefficient and a

statistical test to check whether or not the correlation is zero. We would find values of

r = −0.427, t(298) = −8.148, p < 0.001. A test of the regressor age in the corresponding

model leads us to exactly the same result

Y = β0 + β1 · age

Regressor β̂ β̂∗ Statistic p

(intercept) 110.050 t(298) = 84.929 < 0.001
Age −0.782 −0.427 t(298) = −8.148 < 0.001

R2 18.2% F(1; 298) = 66.385 < 0.001

Moreover, the value of the correlation coefficient corresponds exactly to the standard-

ized weight β̂∗
1 and the coefficient of determination R2 corresponds to its squared value.

Analysis of variance

If we were to ask whether subjects with different levels of education receive different

scores on average, and we did not take gender or age into account, an one-way analysis of

variance would be an adequate choice. The test would lead us to the result F (2; 297) =

59.741, p < 0.001. This test can also be implemented within the linear model

Y = β0 + β1 · SecEdu + β2 · PrimEdu

where SecEdu and PrimEdu are the dummy variables of the education regressor. The

analysis of variance corresponds to the test of the whole group of dummy variables asso-

ciated with the variable education, or the significance test of the entire model. Of course,

it does not matter which group we choose as the reference group.

Regressor β̂ β̂∗ Statistic p

(intercept) 112.536 t(297) = 82.856 < 0.001
SecEdu −10.766 −0.392 t(297) = −6.246 < 0.001
PrimEdu −18.646 −0.685 t(297) = −10.905 < 0.001

R2 28.7% F(2; 297) = 59.741 < 0.001
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In the context of analysis of variance, the LSD test (Least Significant Difference) is

often mentioned among post-hoc tests. This is a test that compares all pairs of groups

with each other, but unlike, for example, the Scheffé and Tukey tests, the LSD test does

not include correction for multiple testing. The results of the LSD test correspond to the

results of the tests of statistical significance of the individual indicator variables.

One-sample t-test

The hypothesis that the average memory test score is different from 100 could be tested

using a one-sample t-test. In our case, it would lead to the result t(299) = 1.492, p = 0.137.

Here again, the test can be performed within the linear model by comparing the value of

the absolute term with a specified value of 100. This can be done using Wald statistic in

a more general form

T =
β̂j − βj,0√

S2
j

=
β̂j − 100√

S2
j

∼ tn−p

However, probably the most comfortable way is to transform the dependent variable by

subtracting 100 and test the hypothesis that β0 = 0, within the model

(Y − 100) = β0

In this case we again get an identical result.

Regressor β̂ β̂∗ Statistic p

(intercept) 1.147 t(299) = 1.492 0.137

5.4 Example of using null hypothesis tests

In practice, of course, we would never test every hypothesis with a separate model, as

this would cost us the benefits that statistical modelling offers. The correct way is to use

a single overall model which we use for each test. For example, it could look like this:

Y = β0 + β1 · gender + β2 · age + β3 · SecEdu + β4 · PrimEdu

Regressor β̂ β̂∗ Statistic p

(intercept) 123.901 t(295) = 81.034 < 0.001
Age −0.755 −0.412 t(295) = −9.994 < 0.001
Gender −5.995 −0.223 t(295) = −5.436 < 0.001
Education F(2; 295) = 81.977 < 0.001
SecEdu −9.488 −0.346 t(295) = −6.541 < 0.001
PrimEdu −18.167 −0.668 t(295) = −12.677 < 0.001

R2 50.4% F(4; 295) = 74.821 < 0.001
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The p-values of each regressor relate to the null hypotheses H0 : βj = 0. In the case

of age and gender, their significance is obvious, but in the case of the indicator variables

PrimEdu and SecEdu, the test refers to the null hypothesis that the given group does not

differ from the reference group, which in our case is TerEdu. If we wanted to test the

statistical significance of the difference between PrimEdu and SecEdu, the simplest way

would be to select some other reference group and run the test again. The F statistic on

the line Education is the result of a test of the two dummy variables (i.e., PrimEdu and

SecEdu together).

The statistical test in the last row of the table applies to the model as a whole and

evaluates whether the amount of explained variance (ρ2) differs from zero.

Interaction tests

The model above assumes that the effect of age will be the same for men and women,

and for people of any education. Thus, whichever group we are talking about, each year

costs approximately three-quarters of a point on average. At the same time, however, it

is true that a man of any age has, on average, 6 points lower score than a woman of the

same age, and that there is a difference of about 18 points between a college graduate

and a person with primary education (assuming both are the same age and gender). Does

this correspond to reality? It would be quite reasonable to hypothesize that the rate of

decline in memory skills (i.e., the age effect) varies across groups.

The significance of the interaction of the regressors gender and age is represented

in the model by a single regressor which is the product of the two regressors. To test

the significance of the interaction, we could use the corresponding Wald statistic or a

submodel test, where we omit the interaction term (marked in red) from the model:

Y = β0 + β1 · gender + β2 · age + β3 · SecEdu + β4 · PrimEdu + β5 · gender · age

The regression weight β̂5 is almost exactly zero and its effect is not statistically signifi-

cant, t(294) = 0.045, p = 0.964. Thus, we find no evidence that the decline in memory

competence is differently steep for men and women.

If a nominal regressor with multiple levels enters the interaction, we test its significance

using a submodel test, dropping all interaction terms. If we ask whether the rate of

memory decline varies across groups by education, we will represent this with the following

model and submodel:

Y = β0 + β1 · gender + β2 · age + β3 · SecEdu + β4 · PrimEdu

+ β5 · SecEdu · age + β6 · PrimEdu · age
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The difference between the model and the corresponding submodel (i.e., without the

terms marked in red) is shown in Figure 9. The statistical test yields the following results:

Regressor β̂ β̂∗ Statistic p

(intercept) 120.560 0.000 t(293) = 57.139 < 0.001
Age −0.429 −0.234 t(293) = −2.657 0.008
Gender −6.040 −0.225 t(293) = −5.505 < 0.001
Education F(2; 293) = 14.515 < 0.001
SecEdu −5.380 −0.196 t(293) = −2.039 0.042
PrimEdu −13.452 −0.494 t(293) = −5.218 < 0.001

Education × Age F(2; 293) = 2.661 0.072
SecEdu × Age −0.386 −0.218 t(293) = −1.926 0.055
PrimEdu × Age −0.447 −0.237 t(293) = −2.212 0.028

R2 51.2% F(6; 293) = 51.329 < 0.001

Although in Figure 9 we can clearly see that, at least in our sample, the decline

in memory skills is slightly slower in people with tertiary education than in the other

two groups, the difference is not significant (p = 0.072). Thus, we find no support for

our hypothesis claiming that the rate of decline in memory competence is related to an

individual’s level of education. Somewhat paradoxical may be the partial results – the

difference in the effect of age between people with a tertiary education and people with a

primary education is significant (p = 0.028) and between people with a tertiary education

and people with a secondary education is borderline statistical significant (p = 0.055).

The reason for this is that pairwise comparisons are not corrected in any way, whereas

the omnibus nominal regressor test accounts for the fact that we are examining multiple

variables at once. We should therefore be cautious when interpreting the significance of

the interaction term PrimEdu × age as it does not provide solid evidence.
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Figure 9: Model with and without gender × age interaction

As in Figure 8, the colors distinguish the groups by education and the shape of the marker
distinguishes men and women. The plotted lines then correspond to the regression lines of each
group by education and gender (women are marked with a solid line, men with a dashed line).
The same applies to the lines and curves in the following figures.

Testing the quadratic relationship

It would also be reasonable to assume that the decline does not occur at a steady rate

but is accelerating over time. We can model this relationship as quadratic. We would

test the hypothesis using the following model and its submodel:

Y = β0 + β1 · gender + β2 · age + β3 · SecEdu + β4 · PrimEdu + β5 · age2

The difference between the model and the submodel is shown in Figure 10 and the

statistical significance of the difference in the following table:

Regressor β̂ β̂∗ Statistic p

(intercept) 121.192 t(294) = 64.434 < 0.001
Age −0.161 −0.088 t(294) = −0.628 0.530
Age2 −0.022 −0.339 t(294) = −2.434 0.016
Gender −6.039 −0.225 t(294) = −5.520 < 0.001
Education F(2; 294) = 83.879 < 0.001
SecEdu −9.545 −0.348 t(294) = −6.634 < 0.001
PrimEdu −18.232 −0.670 t(294) = −12.826 < 0.001

R2 51.3% F(5; 294) = 61.040 < 0.001
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Figure 10: Model with quadratic and linear effect of age

Since this is a single regressor test, we can use the Wald statistic, t(294) = −2.434,

p = 0.016, and conclude that our hypothesis of a quadratic effect of age can be accepted.

The interpretation of the statistical test of the age regressor is very unintuitive. It is

not a test of the hypothesis that age affects memory skills, but of the rather uninteresting

hypothesis that the peak of the age effect parabola is located above zero (i.e., at 60 years).

We have already addressed this issue in Chapter 4.3. Although the regressor age forms

an integral part of the model, there is no point in interpreting its value and statistical

significance. If we wanted to test statistical significance of age, assuming that age can

have a quadratic effect, we would have to create a submodel without both age and age2

regressors:

Y = β0 + β1 · gender + β2 · age + β3 · SecEdu + β4 · PrimEdu + β5 · age2

The corresponding test confirms a statistically significant effect of age, F (2; 294) = 53.739,

p < 0.001.

The situation becomes even more complicated if we include the quadratic effect of age

in the model and assume that this effect varies for different groups by education. If we

were to test this model and submodel

Y = β0 + β1 · gender + β2 · age + β3 · SecEdu + β4 · PrimEdu

+ β5 · SecEdu · age + β6 · PrimEdu · age + β7 · age2

we assume that the age curve is equally curved for all groups, but in addition to shifting

up and down, it can also shift left and right for individual groups. Thus, we again test
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the not very interesting hypothesis of whether the peaks of each parabola are localized

over the same value of the x axis or not.

The result is not significant, F (2; 292) = 2.303, p = 0.102, although the graphical

representation in Figure 11 can be interpreted relatively well.

Figure 11: Model with quadratic effect of age with and without interaction term

It would probably make more sense to model the dependent variable using a model

with the interaction education × age, but also education × age2:

Y = β0 + β1 · gender + β2 · age + β3 · SecEdu + β4 · PrimEdu + β5 · SecEdu · age

+ β6 · PrimEdu · age + β7 · age2 + β8 · SecEdu · age2 + β9 · PrimEdu · age2

A test of the submodel without the red terms tests the hypothesis that the curve of

memory skills decline has a different shape depending on education (see Figure 12). In

this case, we also found no evidence to reject the null hypothesis, F (4; 290) = 1.300,

p = 0.270, which is not surprising since (as we can see by comparing Figures 11 and

12) our model provides almost the same solution as the previous one, while using four

parameters to describe the role of age instead of the original two.

Even though we have not shown a differential effect of age in various groups, admitting

this possibility would change the way we test the general hypothesis that the age regressor

affects memory test performance. We would compare the above model with a submodel

that lacks all regressors (either interaction terms or main effects) containing the age

regressor (to any power):
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Figure 12: Model with quadratic effect of age with and without interactions

Y = β0 + β1 · gender + β2 · age + β3 · SecEdu + β4 · PrimEdu + β5 · SecEdu · age

+ β6 · PrimEdu · age + β7 · age2 + β8 · SecEdu · age2 + β9 · PrimEdu · age2

The result is again statistically significant, F (6; 290) = 18.853, p < 0.001. The differ-

ence between the model and the submodel can be seen in Figure 13.

Figure 13: Model with and without quadratic effect of age including interactions
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6 Predictions and interval estimates

Consider once again that all the results we obtain during the calculations within the linear

model are realizations of random variables. They are therefore not invariant “true” values

– if we lost our data matrix and run the research again, even though we would follow all the

steps and the actual relationship of the phenomena under study would remain unchanged,

we would get slightly different results. We know from basic statistics courses that it is

often useful to give a confidence interval instead of a point estimate (although often very

precise, it is always at least slightly different from the true value), which tells us within

what range it is reasonable to expect the true value of the parameter being estimated. In

Chapter 5.2 we have already described the interval estimates of the individual coefficients

of β. In this chapter, the possibility of constructing confidence intervals for the entire

regression line as well as prediction intervals for new data points are explored.

6.1 Point-wise and simultaneous confidence bands

In Chapter 2.2 we asked how many points Otto, Agatha, Ursula or some other classmate

would get on their exam if they studied for 6 hours. Let us say we use the data from

eight students in Table 1 on page 20 to answer this time. We have already estimated the

regression coefficients, therefore we can formulate our model as

Y = 22.00 + 1.462 ·X

where Y is the number of points earned and X is the number of hours spent studying.

The point estimate Ŷ assuming X = 6 is 22.00 + 1.462 · 6 = 30.769. Regardless of the

number of regressors, we could express the prescription for Ŷ as the product of two vectors

Ŷ = x′β̂, where β̂ is a vector of regression weight estimates (β̂0, β̂1, ..., β̂k) and x is the

vector of the regressor values used for the prediction. This vector always starts with 1

which belongs to the absolute term. In our case x = (1, 6)′.

Thus, our model indicates that people who spend 6 hours studying for the exam will

score about 31 points on average. In reality, however, this claim relies on point estimates

of β̂ which themselves may not correspond to reality as they are subject to random

variability. If we wanted to be precise, we could define a confidence interval that covers

the expected value of Ŷ for a given x with probability 1− α (typically 95 %).

This task is relatively simple, since we know that the random variable Ŷ is the sum

of the random variables β̂ multiplied by the given constants x. We also know that the

estimates of the individual coefficients of β̂j have a normal distribution N(βj, σ
2
j ) when the

assumptions are satisfied, and notably that we can estimate the variances and covariances
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of the individual regression weights using the relation V̂AR(β̂) = S2
ϵ (X

′X)−1. In our case

V̂AR

(
β̂0

β̂1

)
= 67.282·

(
8 117
117 2067

)−1

= 67.282·
(

0.726 −0.041
−0.041 0.003

)
=

(
48.849 −2.765
−2.765 0.189

)

Therefore, we know that V̂AR(β̂0) = 48.849, V̂AR(β̂1) = 0.189 and ĈOV(β̂0, β̂0) =

−2.765. Hence, if we are interested in the variance of Ŷ , then with knowledge from basic

statistics courses we will derive the relationship:

V̂AR(Ŷ ) = V̂AR(1 · β̂0) + V̂AR(6 · β̂1) + 2 · ĈOV(1 · β̂0, 6 · β̂1) =

12 · V̂AR(β̂0) + 62 · V̂AR(β̂1) + 1 · 6 · 2 · ĈOV(β̂0, β̂1) =

1 · 48.849 + 36 · 0.189 + 12 · (−2.765) = 22.475

The exact same procedure would be much easier to write in matrix formula as V̂AR(Ŷ ) =

S2
ϵ · x′(X′X)−1x.

Since the random variable Ŷ is produced as a weighted sum of random variables with

a normal distribution, it also has a normal distribution. Similar to the construction of the

confidence interval for the expected value in the basic courses, this is a situation where

we have the variance in the form of a point estimate, and we do not know the true value

of the parameter. We will therefore use a t-distribution with n − p degrees of freedom

instead of a normal distribution, where p is the number of estimated parameters (i.e., 2 in

this case).

The confidence interval for the expected value of the random variable Ŷ for the given

values of the regressors x can be formulated as

I1−α = x′β̂ ± tn−p,(1−α
2
) · Sϵ

√
x′(X′X)−1x

where the expression tn−p,(1−α
2
) denotes the corresponding quantile of the random variable

with Student’s t-distribution. If we plug in the values from our example and set the α level

to the usual 5%, we get the following result:

I95% = 30.769± 2.447 · 4.741 = 30.769± 11.600 = (19.169; 42.369)

Now, we can say that if we have an infinitely large set of students who spent exactly

6 hours studying for the test, then their average score will be equal to some number we

can expect to lie within the interval (19.169; 42.369).
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In practice, it might be useful to calculate the confidence interval for all possible

number of hours spent studying, thus creating a confidence interval for each point on the

regression line. This solution is indeed used and can be found in literature under the name

point-wise confidence band around the regression function. However, a certain

limitation of this procedure stems from the fact that although each of the individual

confidence intervals created has a specified confidence level and we cannot claim that the

band created by this procedure will cover entire regression line in 1 − α cases. Once

again, we run into the multiple testing problem – if each of the intervals created has a 5

% probability of not covering the value of interest, then the probability that at least one

fails is of course noticeably higher.

The solution may be to use a multiple testing correction. Since we need an infinite

number of intervals to create a confidence band, we can use Scheffé’s approach which is

more parsimonious than Bonferroni’s approach when creating a large number of intervals.

It ensures that the confidence band covers the entire regression line or curve with the

required level of confidence. The principle of Scheffé’s theorem will not be presented here,

but the solution itself will be given. The Scheffé’s confidence band is defined as

I1−α = x′β̂ ± Sϵ

√
p · Fp,n−p,(1−α) · x′(X′X)−1x

where Fp,n−p,(1−α) denotes the corresponding quantile of the random variable with Fisher

distribution. We refer to this region as simultaneous confidence band for the re-

gression function.

6.2 Prediction interval

In addition to finding intervals for the expected value of Ŷ , we can also create prediction

intervals. A prediction interval describes the behavior of future measurements – it is the

interval into which any future observation with the values of the regressors x will fall

with probability 1 − α. We construct the prediction interval similarly as the confidence

interval, keeping in mind the difference that we have two sources of imprecision instead of

one in prediction. When we estimate the variance of the random variable under study, we

include, as in the previous case, the variance arising from the uncertainty of the estimation

of the regression weights β, but we also add the variance of the individual values around

the regression line, which is characterized by the residual variance S2
ϵ :

P1−α = x′β̂ ± tn−p,(1−α
2
) · Sϵ

√
1 + x′(X′X)−1x
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Figure 14: Confidence and prediction bands for the regression line

The dark area shows the point-wise band and the light area shows the simultaneous band for
the regression function. The purple curves define the prediction band. The bands reach their
narrowest points right above the mean value of the regressor.

If we know that the expected observations will be measured with a different accuracy

than the existing ones, then we can replace the number 1 in the formula with a number

that expresses how many times more or less accurate the new measurements are (more

precisely, how many times more or less variance they have). Again, we can calculate an

interval for any vector x, creating a band into which any future observation will fall with

a specified probability.

Returning to the question of how many points we will get if we study exactly 6 hours

for the exam, the best answer is the interval (7.59, 53.95), since we can expect such a score

with 95 % probability. Obviously, with estimates made based on only eight observations,

our model is quite unreliable. A graphical representation of the prediction bands as well

as point-wise and simultaneous confidence bands for the regression line are given in Figure

14.
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7 Assumptions of the linear models

From basic statistics courses we already know that every statistical test is bound by

certain assumptions we make about the random variables we are describing. Tests within

linear models are no exception, and the least squares method itself has certain conditions

of use. If we understand the assumptions of linear models well, we will also know in detail

the assumptions for calculating t-tests, analysis of variance or correlation coefficient tests,

since, as we already know, these are special cases of linear models.

Traditionally five conditions of linear models are mentioned. To those we add a brief

discussion of the appropriate sample size and also a sort of null condition that prescribes

that the dependent variable must be a quantitative (metric) variable and the regressors

must be quantitative or alternative variables (or nominal, converted to alternative dummy

variables). Situations where we work with other variables can also be modelled, but then

we would have to use more advanced nonlinear statistical models.

7.1 Correctly specified model

Each model can describe only those relationships which it is designed for. So, for example,

a simple regression can only describe linear relationships, but it would fail to describe a

dependency in the form of a curve (this is illustrated by Figures 5 and 6 in Chapter 4.3).

If we use an inappropriate model, we will easily overlook the existing relationship, and be

mistaken that the regressors in question are not related to the dependent variable.

7.2 Independence of the random component

Statistical tests are performed on observations that do not interact with each other, hence

we can describe them as independent. In the context of linear models, we will refine

this condition a bit more – we will discuss the independence of the random component.

Let us imagine that we know the exact values of the parameters of β and that we are

therefore able to draw the regression line (or curve) of the model without any errors.

If we make observations, the measured values of Y will naturally fluctuate randomly

around this regression line. The independence of the random component means that this

variation will be independent for individual observations. Thus, for example, if we observe

a value highly above the regression line in a certain participant, this provides us with no

information about what result we will observe in all other participants10.

10 In some texts, this condition is referred to as independence of residuals. However, this is not entirely
accurate, since the residuals of the model calculated as Yi − Ŷi are always at least weakly dependent.
The reason for this is that the computation of an arbitrary residue relies on estimates of β̂. However,
these estimates were obtained using all other observations. Therefore, the exact value of any residual is
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To give the reader a better idea of what is meant by independence condition, let us give

some examples of circumstances in which this condition is violated. Imagine you measure

the satisfaction rate of employees from several teams in a company. You might expect that

if there is a negative mood among one team, its members will become infected by it and

score lower on the satisfaction scale. As a result, the observations are not independent. To

restore independence, we need to include information about who is in which team. We add

a nominal variable team among the regressors. De facto, this expresses the assumption

that each team has its own mood, which adds or subtracts some fixed number of points

from each of its members’ scores11.

Another example of a violation of the independence condition could be when Ursula

in the first example in this textbook actually copied from Agatha. In that case, the

results of the two students are again somehow tied together. One more example: we are

investigating an occurrence of certain communication patterns in men and women who

are in a romantic relationship. The data set is made up of individuals, but we overlook

the fact that some of the research participants are couples. Again, observations within

these couples interact with each other.

Let us add that the independence of the random component is quite crucial and

overlooking interrelated groups of observations will usually lead to false positive results

on statistical tests.

7.3 Absence of collinearity

The term collinearity is defined as correlation between regressors. In general, regressors

can be correlated, but only to some reasonable degree. The weights of highly correlated

regressors (say, |r| > 0.9) are difficult to estimate and introduce large error because it is

difficult to distinguish which of two nearly identical regressors plays a role in the statis-

tical model. If it happens that some two regressors are perfectly correlated (|r| = 1.0),

then least squares estimation cannot be conducted at all (the calculation would yield a

singular matrix X′X, and thus inverse cannot be determined). Statistical software would

probably warn us with an error message or automatically exclude some regressors from

the calculation.

Collinearity itself is a fairly easy problem to detect – just look at the correlation

matrix of the individual regressors and it is obvious which regressors are correlated in

the model. But a much harder nut to crack is the multicollinearity. We talk about

multicollinearity when there is a group of regressors in the model which can be used to

affected to some extent by each element of the data set.
11 We could even use this elegant solution if we perform repeated measurements on each person. Of

course, the rows of the data table belonging to the same person are dependent, but independence is
restored if we insert the proband regressor into the model. However, this solution usually leads us to use
so-called random factors (see Chapter 13 on mixed-effect models).
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form a linear combination that is highly correlated with another regressor. Again, when

correlation is equal to 1.0, parameters cannot be estimated. Typically, multicollinearity

is encountered by students who, in preparing dummy variables, forget that they must

omit one (reference) level of the nominal variable. If no dummy variable is omitted, the

correlation between any dummy variable and the sum of the remaining dummy variables

is −1.0, and the statistical software produces a warning instead of a result.

Multicollinearity cannot be detected by looking at the correlation matrix of the regres-

sors, but we use a statistic called variance inflation factor (VIF) and tolerance to detect

it. Tolerance can be calculated for any regressor. It takes form of a number between

0 and 1 that indicates how much unique variance (not shared with other regressors) a

given regressor contains. It is again calculated using a linear model, but this time we

choose the regressor under study as the dependent variable and the remaining regressors

as the independent variables. The tolerance then corresponds to the unexplained variance,

i.e., 1−R2. The VIF is simply the inversion of the tolerance, i.e., 1
tolerance

.

The VIF indicates how many times the variance of the estimate of the weight of a

given regressor has increased compared to a situation where that regressor would not be

correlated with any other regressor. Thus, if the VIF is 4, the variance of the estimate is

four times larger and the standard deviation as well as the width of the confidence interval

for the parameter β is twice as large. A VIF value greater than 5 or 10 (i.e., less than

10–20% of the unique variance) is usually considered a problem. If we find a regressor in

our model that violates this condition, we should consider whether some of the dependent

variables describe almost the same thing and are thus redundant.

7.4 Normal distribution of residuals

The normal distribution condition appeared in all parametric tests in basic statistics

courses. Not surprisingly, this condition is also present in linear models. What is perhaps

surprising, however, is that even if neither the random variable Y nor any of the regressors

have a normal distribution, this condition is not necessarily violated. We require a normal

distribution only for the residuals of the model.

Therefore, after creating a model, it is useful to view a histogram of the residuals or

their Q-Q plot (see below) and consider whether the shape differs too greatly from normal

distribution. Normality tests can sometimes be helpful, but their use is nevertheless

burdened with logical fallacy. If we are working with a small sample size, the normality

test has little power and is unlikely to find a significant difference from normal distribution.

If the sample size is in hundreds of observations, the power of the statistical test is strong

and even a slight difference from a normal distribution will lead to a very low p-value.

This is in stark contrast with the fact that the statistical tests we perform in linear
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models become robust to violations of the normal distribution condition as the sample

size increases. Thus, if we are working with about a hundred or more observations, the

model results may be relevant even though normality tests report serious violations of the

condition.

Most types of statistical software can display a histogram as well as a so-called Q-Q plot

(quantile-quantile plot). Q-Q plot is generally used to compare probability distributions

observed in two samples or to compare a sample distribution and a specified theoretical

distribution. In our case, we are comparing the distribution of residuals with normal

distribution. When constructing Q-Q plot, we calculate what sample quantiles correspond

to each residual (thus obtaining a set of values α1 to αn lying between zero and one). For

each of these numbers, we find the quantile value of the normalized normal distribution αα.

Finally, we create a scatter plot by plotting the residuals on one axis and the corresponding

quantiles of the normal distribution ϕα on the other. If the distribution of the residuals

resembles a normal distribution, the resulting pattern will be shaped approximately as a

straight line extending from the lower left-hand corner of the graph to the upper right-

hand corner. If the residuals do not follow a normal distribution, the resulting pattern

will be some sort of curve. Let us add that reading Q-Q plots is not as straightforward

as reading histograms and it requires more experience. For comparison, see histograms

of residuals and corresponding Q-Q plots in Figure 15.

7.5 Homoscedasticity

Homoscedasticity is a term for homogeneity of residual variance. The homoscedasticity

condition is satisfied when, for any regressor, the residuals have the same variance for all

its levels (or values). Thus, if the regressor is gender, then we require that the residual

variance is the same for men and women. If the regressor is intelligence, we require

an invariant residual variance across all IQ levels from low to high. The opposite of

homoscedasticity is called heteroscedasticity.

The easiest way to inspect if heteroscedasticity is present is to use a scatter plot. Plot

the values of the respective regressor of each observation on the x axis and their residuals

on the y axis. We would have to repeat this process for each regressor, which can be

tedious for larger models, therefore we often choose the simpler approach where we plot

the values of the predictions Ŷ on the x axis and the residuals (or standardized residuals)

on the y axis. Whichever approach is used, the graph should not show any meaningful

shapes and should resemble figure 16a. A typical example of heteroscedasticity is figure

16b. Figure 16c is also indicative of heteroscedasticity; moreover, we can identify at a

glance here that it is due to having neglected of a fundamental effect that influences the

Y variable.
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Figure 15: Histograms of residuals and Q-Q plots

The top two plots are based on data with a distribution close to a normal distribution. The
bottom two come from a positively skewed distribution and the normality condition is therefore
violated.
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Figure 16: Homoscedasticity and heteroscedasticity
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Unlike the normal distribution condition, the detrimental effect of heteroscedasticity

does not diminish as the sample size increases. If we encounter this problem, we should

reflect on whether an appropriate model was used. In addition to graphical inspection,

there are statistical tests of homoscedasticity. However, their use is burdened with the

same problem encountered when using the F test before selecting the appropriate t-test.

7.6 Sample size

When working with linear models, we often encounter the question about what is the

lowest number of observations we need to be able to apply the learned procedures. There

is no clear answer to this question, as the question itself is somewhat ambiguous.

What does adequate sample size mean? The procedures we have learned in the context

of linear models are not asymptotic, and thus work for almost all small sample sizes. The

least squares method can be used once the number of observations is at least as high as the

number of estimated parameters. If we have more observations than there are parameters

in the model, we can estimate the variance of the estimates of the regression weights, and

thus perform any test of statistical significance.

However, there are two reasons why we would like to have a somewhat larger sample

size than p+1. The first is that a small sample size is not robust to violations of residual

normality condition, and a small number of data points will not even allow us to get

a picture of whether or not this condition is satisfied. The second reason is statistical

power. With a small sample size, statistical tests have little chance of rejecting the null

hypothesis, or, if we were to calculate the confidence intervals of the regression weights,

we would find that they are so wide that they communicate essentially nothing at all.

For this reason, we come across some rules of thumb discussed in literature to help

us determine the number of observations needed to provide meaningful estimates. With

these rules the sample size is usually derived from the number of regressors in the model

(labeled k). In psychology, authors most often refer to the following recommendations12:

� n ≥ 104 + k for testing a hypothesis that R2 is different from zero,

� n ≥ 50 + 8k for testing individual regressors.

Let us add that this recommendation is only a rough approximation. In addition to

the number of regressors, it also depends on how correlated these regressors are (high

correlation significantly weakens the tests), and in particular how large the sizes of effects

we are trying to detect are. The most appropriate approach would be to use power analysis

procedures, but these are difficult to implement in linear models because it is not easy to

12 Green, S. B. (1991). How many subjects does it take to conduct a regression analysis. Multivariate
behavioral research, 26 (3), 499–510.
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estimate the correlation structure of all the included variables in advance. The proposed

procedure fails for very simple models (for example, for a t-test with two independent

samples it requires 105 or 58 observations, which is an unreasonably high number), but

also for very complex models, where it rather underestimates the required number of

observations (for example, for a model with 20 regressors, 124 or 210 observations are

required, which in practice would probably not be considered a satisfactory number).

The answer is that for simple models we can work with data sets of a few dozens of

observations, but we need to have a reason to believe that the assumptions are met. For

very complex models, we should require a sample size of several hundred observations.

For other cases, the above rules of thumb may help.
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8 Problematic observations detection

To have confidence in the results we have obtained using a statistical model, we usually

take several steps after estimating the parameters, commonly referred to as model diag-

nostics. These steps include examining the distribution of the residuals, verifying the

absence of heteroscedasticity, and calculating the VIF for each regressor. We are already

familiar with these steps from the previous section.

In addition to this, it is often useful to pay attention to the presence of observations

that are atypical and stand out within our model. Usually this involves examining the

presence of different kinds of outlying or influential observations. There is a myriad of

statistics that we use to describe behavior of individual observations. When diagnosing

a model, we generally do not utilize all of them but settle for one or two indicators that

we pay attention to. We will become familiar with a few of them that are used quite

frequently.

8.1 Raw residuals

One of the basic lessons of parametric statistics is that outlying observations can have a

noticeable effect on the plausibility of a result. Identifying an outlier when working with

one or two variables is a relatively easy task. However, in the case of more complex designs,

we may encounter a situation where an observation is not an outlier in any observed

feature but is nevertheless in striking conflict with the model. Conversely, there may be

observations that are noticeably outlying in several features, and yet are in good agreement

with the model. When looking for observations that do not agree with what the model

expects, it may be useful to check for the presence of outliers in the residuals. Extremely

high or extremely low values can warn us about observations that are problematic in some

way (for example, we made a mistake when transcribing the results into the data matrix).

For graphical presentation, the absolute value or the square root of the absolute value

is sometimes used instead of the original residuals. The one advantage of this modification

is that a simple look at the highest values will suffice. Sometimes the value of the residuals

divided by the estimate of the standard deviation σϵ is also presented.

8.2 Deleted residuals

Despite the above-mentioned advantages, even residuals are not able to warn us about

every problematic observation. Figure 17 demonstrates a situation where one outlying

observation is present in a small data set and has changed the results so much that its

residual is actually one of the closest to zero. Examining the residuals themselves would
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not help us in this case. One approach to resolve this situation is to compute deleted

residuals. Deleted residuals are similar to raw residuals, but this time we use parameter

estimates based on all data points except the one whose residual we are calculating. Thus,

if we compute this statistic for the i-th observation, we firstly estimate β weights using

the entire data set excluding the i-th observation, then we make a prediction for the i-th

observation from the obtained weights and finally we calculate the residual.

To compare the raw residuals and the deleted residuals, we simply calculate their

difference. This statistic is sometimes referred to as DFFIT in literature.

Figure 17: Influential observation

8.3 Leverages

The problem of influential observations is also solved by a statistic called leverage. This

is a more sophisticated statistic, and to understand it we must first get acquainted with

the projection matrix.

The projection matrix H (also called hat matrix ) is a remarkable concept with a

number of surprising properties13. Its form can be derived from two relations we already

know:

β̂ = (X′X)−1X′Y Ŷ = Xβ̂

13 One of them is idempotence. If we multiply the idempotent matrix H by itself, then we again get
the matrix H, i.e., HH = H.
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Substituting β̂ from the first equation into the second equation produces the relation

Ŷ = X(X′X)−1X′Y

which can be redescribed as

Ŷ = HY where H = X(X′X)−1X′

The projection matrix H has dimension n × n. As the relation above states, if we

multiply the column (vector) of observations Y by the H matrix, we get the predictions

Ŷ. Readers familiar with the principle of matrix multiplication may notice the mechanism

by which the individual predictions are computed using theHmatrix. If we are calculating

a prediction for the i-th observation, we take the i-th row of the H matrix and multiply

its first element by Y1, its second element by Y2, and so on, including the i-th element

which we multiply by Yi. All the results are then summed up together. Note that the

i-th element of the i-th row (i.e., any diagonal element) always indicates to what extent

the value of the i-th observation (Yi) affects its own prediction (Ŷi). In other words, how

much a given observation is able to influence the outcome in its favor.

These values of the diagonal of the H matrix (we label them hi) are referred to as

leverages. This statistic always lies between 0 and 1 (usually much closer to zero than

one), and high values indicate influential observations.

8.4 Standardized residuals

In addition to identifying the effect of observations, the hi statistic has applications in

the calculation of standardized residuals. If we wanted to standardize the residuals, we

would probably consider dividing the value of each residual by the estimated standard

error of the Sϵ. This approach, while logical, overlooks one fact: although the random

component of the model has the same variance across observations, the variance of indi-

vidual residuals can vary considerably from observation to observation. The residuals of

influential observations (typically observations with marginal values of one of the regres-

sors) have less variance than less influential residuals. The variance of the residual ϵi can

be estimated as

V̂AR(ϵi) = (1− hi)S
2
ϵ

where hi is the leverage of the observation described in the precedent paragraphs. Di-

viding the values of the individual residuals by the square root of the variance of their

estimates yields standardized residuals. Although standardized residuals are usually not

very different from residuals converted to z-scores (i.e., divided by Sϵ), it is certainly

a more accurate answer to the question of which observation outlies more than others.

Standardized residuals are sometimes referred to as internally studentized residuals.
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8.5 Studentized residuals

The previous discussion of residue standardization can be combined with the omission of

individual observations in residue calculations. If we apply the procedure described in the

section on standardizing residuals but omit the i-th element in the calculation of the i-th

residual, then we refer to studentized residuals (more precisely, externally studentized).

The studentized residuals have a Student’s t-distribution with n − p − 1 degrees of

freedom, which makes them useful for performing various statistical tests.

8.6 Cook’s distance

Cook’s distance solves a similar problem to leverage. This time, however, we evaluate not

only the extent to which a given observation affects the prediction of its own value, but

also the extent to which it affects the predictions of all n observations. Thus, in addition

to the predictions of Ŷi, we need the predictions obtained when using all observations

except the first (labeled Ŷi(1)), except the second (Ŷi(2)), and so on up to the last (Ŷi(n)).

We then calculate the Cook’s distance for the j-th observation as follows

Dj =
1

pS2
ϵ

n∑
i=1

(
Ŷi − Ŷi(j)

)2

The Cook distance has a Fisher F distribution with p and n − p degrees of freedom

provided the assumptions hold.

The diagnostics of influential observations can be demonstrated using the data set of

Otto, Agatha and six other classmates from the example in chapter 2.4. Figure 18 shows

the leverage and Cook’s distance of each observation. This and other data is summarized

in the table 9. As can be seen, it is Ursula who most effectively attracts the regression line

to herself, providing us with valuable information about what happens when we attempt

the exam without studying. At the other extreme, then, are the three students who have

studied for 20 or more hours. If we use Cook’s distances to evaluate who influences the

model the most, we find that Boris and Rosemarie are particularly powerful, and although

they do not have a significant effect on the slope of the line, they do push it up noticeably.
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Figure 18: Influential observations

Table 9: Model diagnostics

Student Y X Residual
Stand.
residual

Stud.
residual

Leverage
Cook’s
distance

Agatha 42 16 −3.38 −0.44 −0.41 0.13 0.01
Otto 30 10 −6.62 −0.89 −0.88 0.19 0.09
Ursula 24 2 −0.92 −0.17 −0.16 0.57 0.02
Boris 53 11 14.92 1.99 3.10 0.16 0.38
Ivanka 54 24 −3.08 −0.47 −0.44 0.37 0.07
Anastasia 48 20 −3.23 −0.44 −0.41 0.21 0.03
Nela 35 13 −6.00 −0.79 −0.76 0.13 0.05
Rosemarie 61 21 8.31 1.16 1.20 0.24 0.21
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9 Transformations of the dependent variable

In chapter 7.4 we stated that even a major skewness of the dependent variable does

not necessarily mean that the residuals of the model violate the assumption of normal

distribution. This statement is true in theory, but in practice we find that in most cases

when we work with a highly skewed dependent variable, this skewness will remain in

residuals, and what is more, it will often be accompanied by heteroscedasticity.

If we consult a statistician about this problem, they will probably suggest leaving

the world of linear models and constructing a non-linear model tailored to the particular

distribution of variables. At our level of knowledge, however, we are not equipped with

such tools, therefore we will have to settle for a trick that allows us to use the knowledge

we already have. This trick may be a well-chosen transformation of the dependent variable

Y .

By transformation, we mean that we apply a function (which is monotonic, albeit

nonlinear) to the Y variable. In literature, one may come across functions such as
√
Y ,

1/Y or log(Y ). We then insert this adjusted dependent variable into a linear model as

usual, and if we are lucky, it will already satisfy the conditions of normal distribution of

residuals and homoscedasticity. If we then want to make predictions using this model, we

apply our transformation inversely to the outcome (either the point estimate or the limits

of the interval estimate) to return to the original units where Y was measured. For the

three transformations above, these inverses are Ŷ 2, 1/Ŷ and exp (Ŷ ).

One of the main reasons why transforming the dependent variable cannot be univer-

sally recommended, and why many statisticians would label it either inelegant or even

barbaric, is that most transformations make it impossible to interpret the regression co-

efficients we find. This is because they describe the behavior of the transformed variable,

which is often far from imaginable reality (what does it mean, for example, to claim

that the square root of the number of symptoms increases by half a point?). Often we

are left with no choice but to abandon a precise description of the relationships between

the variables and simply state statistical significance, supplemented where appropriate by

standardized regression coefficients to illustrate the effect size.
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9.1 Log-normal regression

There are transformations of the dependent variable that do not suffer from the above-

mentioned flaw. It does change the way we think about the model in some way, but we

do not lose the ability to interpret the coefficients obtained. Probably the most popular

of these models with a transformed dependent variable is the log-normal regression.

A log-normal regression is a linear model that works with a logarithm of the dependent

variable14:

log (Y ) = β0 + β1X1 + β2X2 + · · ·+ βkXk + ϵ

While the above prescription allows us to use the least squares method to obtain

estimates of the parameters β, it does not indicate how to think about these numbers.

Following familiar conventions, we could reason that β1 indicates by how many points

the logarithm of the variable Y increases when the regressor X1 increases by one point.

This is a true but utterly unsatisfying statement. To uncover the true meaning of the

model, let us recall the rules of calculating logarithms and exponential functions and let

us rewrite the model equation to a slightly different form.

Let us start with the first step, where we exponentially transform both sides of the

equation. Remember that the exponential and logarithmic transformations are opposites

(so-called inverse functions), and thus exp (log (Y )) = Y . Thus:

Y = exp (β0 + β1X1 + β2X2 + . . .+ βkXk + ϵ)

We also know that the relation exp(A+ B) = exp(A) · exp(B) holds. Note that the plus

sign changes to the times sign. We therefore rewrite our model as

Y = exp (β0) · exp (β1X1) · exp (β2X2) · . . . · exp (βkXk) · exp (ϵ)

Finally, we apply the fact that exp (AB) = exp (A)B:

Y = exp (β0) · exp (β1)
X1 · exp (β2)

X2 · . . . · exp (βk)
Xk · exp (ϵ)

Before we consider what this equation reveals, let us note that our model is no longer

additive but multiplicative. Thus, wherever we used to ask more by how much, we will

now ask how many times more. Also, in our reasoning we will no longer work with the

estimates β̂ themselves, but with their exponentially transformed forms exp (β̂). However,

this is not a problem, since we have already estimated the values of β̂ in the usual way

and we can easily perform exponential transformation using a calculator or spreadsheet

editor. Therefore, we can regard exp (β̂) as a specific number we know.

14 By log in this book we mean the natural logarithm, i.e., a logarithm with base e ≈ 2.718. If we decide
to choose a different base, for example 10, we must replace the Euler number e with it in all calculations.
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The interpretation of exp (β̂0) is analogous to the interpretation of the absolute term

in the classical linear model. It is the predicted value of the Y variable when all

regressors X1 to Xk have zero values. This follows from the fact that any number

raised to the power of is equal to one and exp (β̂0) · 1 is again equal to exp (β̂0). The

estimates exp (β̂1) to exp (β̂k) then indicate how many times on average the value

of Ŷ increases when the value of the regressor increases by one.

Replacing more by how much with how many times more can be confusing at first.

Let us therefore demonstrate the described procedure with an example. Let us choose a

topic outside the field of psychology this time.

Let us imagine that we bought an apartment in Olomouc, Czech Republic, in the

summer of 2019. We can ask ourselves whether it was a good deal compared to different

apartments in the same area, or whether we paid the seller more than what would be

the normal price for the apartment. For this purpose, we extracted all the offers for sale

of apartments in Olomouc from the website of the largest real estate seller that were

available from July to November. In total, we obtained nearly 1,600 records.

The price for an apartment is determined by many factors. For the sake of simplicity,

let us focus on the following: floor area, number of rooms, having separate kitchen, energy

class, condition of the property and having a balcony or a terrace.

The example could be solved as an example of classical regression or as a log-normal

regression. The histogram of the price variable (see Figure 19) indicates that the depen-

dent variable does exhibit positive skewness, but not so substantial as it would invalidate

the results of the statistical tests given the large sample size. Both variants of how to

model the situation are justifiable. In making our decision, let us consider which of these

statements makes more sense: You pay on average e5,600 for a balcony or Balcony in-

creases the price of an apartment by 5 % on average. Let us lean towards the second

option (although the first one may also make sense) and choose a log-normal regression.
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Figure 19: Histogram of the apartment price and its logarithm

The values shown are actual records from a real estate website, not simulated data.

The dependent variable will be log(price). We will use the regressors as usual, but

for clarity we will reduce the regressor apartment size by 60 and divide it by 10. The

absolute term will correspond to the price of a 60-meter apartment and the new apartment

size regressor will quantify how many tens of meters the size of the apartment differs

from 60 meters. As a reference group, we choose a two-room open plan apartment (no

separate kitchen), medium energy consumption, in good condition, without a balcony.

The estimates of the regression coefficients are reported in Table 10.

The results show that if we consider a two-room open plan apartment with an area

of 60 m2, with medium energy consumption, in good condition, and without a balcony,

then we can expect a price of approximately e88,485.

If we bought a three-bedroom open plan apartment of 80 m2 in a new building that

is energy highly efficient and has a balcony, then we would proceed as follows. Consider

the starting price exp(β̂0). Assuming it is a three-bedroom apartment, let us multiply

this amount by 1.17. For being energy efficient, multiply by 1.06 and for being a new

building by 1.27. Furthermore, the fact that the apartment has a balcony raises the price

by 5%, so we multiply it by 1.05. The last adjustment is including the floor area. Our

apartment is 2 tens of meters larger than the 60 m2 initially set. We have to multiply

the price by 1.07 for every 10 extra meters. We will therefore multiply the price by

1.072 = 1.14. If the apartment described was only 30 m2, then we would multiply it by

1.07−3 = 1/1.073 = 0.81.
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Table 10: Coefficient estimates of the log-normal model

Regressor Effect exp(β̂) β̂ t(1575) p-value

Intercept e88,485 11.39 574.36 < 0.001
Floor area 7% 1.07 0.07 25.46 < 0.001
Separate kitchen −12% 0.88 −0.13 −7.02 < 0.001
Has a balcony / terrace 5% 1.05 0.05 4.80 < 0.001

1 room −22% 0.78 −0.24 −13.92 < 0.001
2 rooms 0% (ref)
3 rooms 17% 1.17 0.16 12.78 < 0.001
4 or more rooms 18% 1.18 0.17 6.81 < 0.001

Highly energy-efficient (A–B) 6% 1.06 0.05 2.19 0.029
Moderately energy-efficient (C–F) 0% (ref)
Energy-inefficient (G) −2% 0.98 −0.02 −0.98 0.326

New building / project 27% 1.27 0.24 7.68 < 0.001
Very good / renovated 18% 1.18 0.16 9.30 < 0.001
Good 0% (ref)
Reconstruction needed −5% 0.95 −0.05 −1.38 0.168

The values in the effect column were computed as (exp(β)− 1) · 100 % and tell the percentage
increase in price if the value of the regressor increases by one. The results also include the
reference levels of the nominal regressors for clarity. It may seem like a paradox that apartments
with separate kitchens are cheaper than open plans. This really is not an error, but a trend
known from many areas in the country.
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Like so the procedure is similar to what we already know, except that where we used

a plus sign before, we use multiplication, and where we used multiplication, we compute

power. If you find this procedure unintuitive, you can compute the prediction log(Ŷ )

directly from the parameters β̂ as we are used to, and then exponentially transform the

result itself. Both ways will lead us to the same result.

The expected value of our 80 m2 three-bedroom open plan apartment comes out to

e166, 399. If we are not satisfied with the point estimate, we can calculate a prediction

interval. We can do this simply by calculating the prediction interval for log(Ŷ ) and

exponentially transforming both bounds. For example, if we look for an 80% prediction

interval, we find the values (e132, 198, e209, 447) after the transformation.

Before we start thinking about whether we have made a profit or a loss, let us think

about one more feature of log-normal models. Our prediction is designed to capture the

mean value of the variable log(Ŷ ) as accurately as possible. When we transform it, our

estimate will no longer belong to the mean value (i.e., the average price), but to the

median value. We can sometimes be satisfied with median value, but if we want to say

how an apartment with given parameters costs on average, then we will have to adjust the

result. It can be shown that the adjustment that turns the median value into an estimate

of the expected value takes the form exp(log(Ŷ ) + S2
ϵ

2
), where S2

ϵ is the estimate of the

residual variance of the log-normal model.

If in our case we estimated S2
ϵ equal to 0.032, then a fair prediction of the mean value

is equal to e169, 091. We adjust the bounds of the 80% prediction interval by analogy to

(e134, 337, e212, 836). If the apartment we bought costed, say, 130 thousand euros, then

it may warm our hearts that we bought one of the 10 % most undervalued apartments.
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10 Stepwise and hierarchical regression

In previous chapters, we assumed that statistical models are built all at once – that is, we

know exactly which regressors we want to include, and then we search for their weights.

In this chapter, we will introduce two approaches that, although quite different from each

other, have in common that they build a statistical model in steps.

10.1 Stepwise regression

Imagine a situation where we have a large number of regressors, some of which play

an essential role in the model and other that do not improve our predictions at all.

If we want to use our model to make predictions rather than to explore relationships

between variables, we will appreciate a simple but accurate model that contains only those

regressors that are useful to us. Stepwise regression can lead us to this goal. Stepwise

regression can be implemented in two ways: backward selection and forward elimination.

When we use backward elimination, we start with the original model that contains

all the regressors we have available. We then look for the regressor that has the lowest

weight in the model and ask if including it was necessary. If we conclude that a given

regressor does not really bring any improvement in accuracy, we will remove it from the

model. We then recheck the model and again look for a regressor that could be excluded.

We repeat the process until there is no regressor in the model that we have deemed

redundant.

In contrast, forward selection starts with a model without any regressors and inves-

tigates which of the available independent variables would most improve the predictive

ability of the model. If there is a variable that provides sufficient improvement, we add it

to the model. We repeat the process again until we find that no other variable that could

be added to the model provides further improvement.

Several criteria can be used to assess which variable provides sufficient refinement. In

statistical software, this is most often the value of the F statistic of a test comparing

the accuracy of a model that includes a given regressor with a submodel that does not

include that regressor. If a low value is set, we will retain even those regressors that are

not statistically significant in the model, while only regressors with very small p-values

retain high values.

At first glance, it might seem that the backward and forward methods lead to the same

result. In fact, this may not always be true. There are situations when we have multiple

regressors, each of which on its own yields only a small improvement in accuracy. However,

if they are in the model together, even though we have not added their interaction, they

bring noticeable improvement in accuracy. Such a group would not be included in the
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model using the forward selection, as it adds regressors one at a time and none of the

candidates would meet the entry criterion. On the other hand, the backward elimination

method would retain the entire group in the model, since removing any regressor would

lead to a drop in accuracy.

Stepwise regression as a model building tool is welcome in some situations, but many

statisticians rightfully criticize it. The problem is that in our search for the most effective

regressors, we sift through all possible candidates and easily confuse a good regressor with

a false positive finding – that is, a regressor that does not actually provide noticeable

improvement in accuracy but appears to do so in our sample by a stroke of luck. In

conventional regressions, we would probably be wary of a situation where, say, with a

total of 50 regressors, we identify three as statistically significant, since at a five percent

significance level, under the null hypothesis there is on average one false positive for every

twenty statistical tests. We would also probably be warned by the value of R2
adj., which

would probably be strikingly different from the unadjusted R2. However, if we use stepwise

regression, we obtain an elegant model with three regressors and their significance is not

likely to be questioned.

If, despite this tricky feature of stepwise regression, you want to use this procedure,

read chapter 12 about the risks of overfitting models and ways to counteract them. In

fact, cross-validation is a good remedy for all the problems mentioned.

10.2 Hierarchical regression

Similar to forward stepwise regression, in hierarchical regression we add regressors to

the model sequentially. In contrast to stepwise regression, which is so-called data driven,

hierarchical regression is theory driven. When deciding the order in which to add regressors

in a hierarchical regression, we do not look at their statistical significance, but our decision

is rationally determined by the underlying theory. Typically, we divide the regressors into

several groups, which we add to the model in a predetermined order. At each step, we

then examine the statistical significance of the increment of variance explained (labeled

∆R2).

In one study, for example, we asked whether creative success (i.e., the quantity and

quality of creative achievements an individual has made in their lifetime) is influenced

by two lesser-known traits called systemizing and empathizing (see Simon Baron-Cohen’s

theory for details). In the model with the dependent variable creative achievement, we

included the gender and especially the age of the respondents in addition to the system-

izing and empathy scales, as both of these variables can play a significant role. However,

we could also ask whether the possible effect of systemizing and empathizing is not sim-

ply a result of the fact that these traits correlate with the already well-known Big Five
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personality dimensions, which have already been shown to correlate with creativity, and

thus whether it is not completely unnecessary to include systemizing and empathizing in

our considerations. A hierarchical regression could take the following form.

In the first step, we compare the model without regressors and the model that contains

only gender and age regressors. If the difference in model accuracy is significant, then we

can say that these basic biological characteristics are related to creativity. In a second step,

we compare the model with the regressors of gender and age with a model to which we add

the general Big Five personality dimensions. Again, we ask whether there is a statistically

significant improvement in the predictive ability of the model. If so, we can conclude that

general personality dimensions are related to an individual’s creative success. In addition,

we would state what percentage of variance beyond the basic biological characteristics

the personality profile explains (i.e., ∆R2). The last step is the most interesting from

our perspective. We compare a model containing the regressors age, gender, and the Big

Five dimensions with a model to which we add the variables of interest – systemizing

and empathizing. We investigate statistical significance and calculate how much the

percentage of explained variance has increased this time. The hypothesis we are testing

claims that empathizing and systemizing provide some relevant information about an

individual’s creativity beyond what we already know due to their gender, age, and general

personality dimensions. In doing so, we test the incremental validity of the construct of

systemizing and empathizing. If they failed this test and no longer contributed new

information to the model, it would mean that these two variables are not relevant in

creativity research given what we are able to describe using already well-known constructs.

In most cases, we are satisfied with just two steps, where the first group of regressors

are those who we already know and are not of interest, while the second are those whose

influence we want to explore. If there is a single regressor in the second group, we do not

need to use hierarchical regression, as the submodel test would be identical to the Wald

test. Hierarchical regression is considered to be an thorough approach when managing

data.
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11 Removing the influence of variables

Consider the age-old question of the extent to which human intelligence is affected by

heredity. If we try to investigate this problem empirically, a naive approach will lead

us to a simple research design which includes testing children of a certain age and their

parents by the means of an IQ test. We would naturally find a close relationship between

the two variables. But is this the answer to our question? It is not, since in addition to

passing on some biological inheritance to their children (mainly through genes), parents

also expose them to stimuli that can vary significantly across families and probably affect

the intelligence of the child. There is a solution that would be methodologically (and

ethically) problematic – to force parents to buy their children the same number of toys

and books, enroll them in the same number of extracurricular activities, put them in the

same schools, and provide them with the same amount of space in their rooms, etc. It

would be much easier to grasp this task mathematically.

To do this, it would be necessary to map the various factors that may be involved in

the formation of intelligence for each child, in addition to their IQ and the IQ of their

parents, and then to remove the impact of environmental factors from the child’s IQ.

This removal is done, not surprisingly, using a linear model. We introduce the variable

to be cleaned as Y and all the factors whose influence we want to control for as regressors

X. Perhaps surprisingly, the new adjusted IQ values for children are the residuals of this

model, since the residuals tell us how much better or worse a child does on a test than

we would expect based on the environment which they grew up in.

In addition to saving the residuals thus obtained for any further calculations, we can

make one cosmetic adjustment. The residuals always have a mean of 0, which is often

(for example in the case of IQ) not a very meaningful value. Therefore, we can add the

average value of Y (or some other meaningful value, such as 100) to each saved residual,

which returns the newly obtained variable to its original level.

Another example of removing the influence of confounding variables is working with

physiological data. Imagine a situation where you use an electroencephalography (EEG)

to measure brain activity of a participant who is exposed to a certain stimulus. The

EEG responds in a very non-specific way and instead of the studied potential we can

easily measure the changes in voltage caused by, for example, motor activity. A typical

source of artefacts is the activity of the oculomotor muscles, whose traces are particularly

noticeable when the task does not allow the use of a fixation cross (for example, when

driving a car). A simple solution is again provided by the linear model15.

15 If we delve deeper into this problem, we find that in practice there are a number of much more
advanced and effective approaches that address this problem.
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Figure 20: EEG and EOG signal

The experiment would involve an electrooculography (EOG) in addition to the EEG

electrodes. If we use two pairs of EOG electrodes, we can track vertical and horizontal eye

movements separately. All the measured data is illustrated in Figure 20. In addition to

the data from one EEG channel, it also shows the pattern we expect to observe. We ask

to what extent the EEG signal replicates our expectations. We already observe a fairly

good agreement – the correlation coefficient between the EEG and the theoretical values

is 0.69. At first glance, however, we see that there is a number of other artifacts present

in the measured signals that may be caused by eye movement.

The EOG signals can be removed from the original EEG using a linear model. It

will take the form of EEG = β0 + β1EOGh + β2EOGv and in our case it will be able to

explain (remove) 24 % of the EEG variance. The residuals from this model are the EOG-

adjusted EEG signal. For ease of graphical presentation, we can add some constant to

these residuals (which by definition have an average of 0), such as the original average or

the average of our expectation (this situation is illustrated in Figure 21). The correlation

coefficient has increased to 0.82, giving even stronger support to our hypothesis.
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Figure 21: EEG signal after removing the influence of EOG

11.1 Partial and semipartial correlation coefficient

We usually use the adjusted values for further calculation which introduces two new

concepts. We use the term partial correlation coefficient to refer to the Pearson correlation

coefficient calculated between two variables when we have removed the effect of a set of

one or more variables from both variables before the calculation. If we had done this

adjustment on only one of the two variables, then we speak of the semipartial correlation

coefficient (which we also calculated in the EEG example above).

Statistical software usually offers the calculation of the partial correlation coefficient

as a separate function and there is no need to create a linear model and manually perform

all the intermediate steps. However, if for some reason we need to perform the whole

procedure manually, we should take into account a small change related to the test of the

statistical significance of this coefficient. The formula for calculating the test statistic T

will change to the form

T =
RY Z.X√
1−RY Z.X

√
n− k − 2 ∼ tn−k−2

where k denotes the number of factors whose influence was removed (in the EEG

example, k = 2), and RY Z.X is the partial correlation coefficient between the variables Y

and Z with the influence of the variables X = (X1, X2, ..., Xk) removed16.

16 Many types of statistical software, however, ignore this small difference and use the usual formula for
testing significance of the Pearson correlation coefficient. Let us also add that in the specific example of
EEG, the above statistical test would not be accurate, since it is not a set of independent observations, but
a time series. It is doubtful in this context that we can assume independence of the random components
of individual observations.
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12 Overfitting and cross-validation

There is a wide range of options available when creating a model. We can decide which

regressors to include, which first-order or higher-order interaction terms to add, whether to

model continuous variables as linear, quadratic or higher-order powers. It is relatively easy

to slip into creating a model so complex that it does not actually provide any information

at all.

Let us illustrate with an example. Again, let us go back to the data from Table 1 about

Agatha, Otto and their six classmates. We find that predicting the outcome of an exam

using the number of hours a student had spent studying is a fairly rational procedure.

But what if we abandon the assumption that the observed relationship is linear and model

it as quadratic by adding the regressor number of hours squared? And what if this is not

enough and we add the number of hours to the power of three regressor to model a cubic

relationship? Then we could go on and add the hours regressor in higher and higher

powers, up to k. The results will be quite compelling – as each additional regressor is

added, R2 increases. Once we reach k = 7, R2 will be equal to 100 %. The model thus

achieves a perfect fit to the data.

You will probably argue that for only 8 observations we have included too many

parameters in the model (with k = 7 we estimate 8 parameters). The value of R2
adj. will

also warn us about this, and it starts to drop precipitously if there are too many regressors

in the model. The changes in the values of R2 and R2
adj. as regressors are added can be

seen as purple lines in Figure 22.

Figure 22: Coefficient of determination for various numbers of regressors
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In practice, however, the situation is often much less clear. If we run through a

large number of candidates when building a model (for example, similar to the method

we learned in chapter about stepwise regression), we can easily produce a model that

contains a few regressors (and hence R2
adj. remains high) and yet fits the data very closely.

It is not easy for readers to question the quality of a given model, since all quantitative

indicators speak in its favor, and information about how many candidates the final model

was selected from usually remains secret.

The problem we face here is called overfitting. Overfitting generally means that our

parameter estimates are perfectly fitted to our data but they will no longer correspond to

any new data. Thus, if someone replicates our research, their result will not even remotely

resemble ours.

What happens when overfitting occurs is shown in Figure 23. The red points represent

the students in our data set and the purple and orange curves represent the expected

results according to each model. As you can see, the linear, quadratic and cubic models

behave almost identically in this case, and thus all give almost the same R2 values. At

k = 4, however, a strange thing starts to happen – the regression curve starts to fluctuate

over a wide range of low and high values. At k > 4 it leaves any reasonable bounds. The

curve from the model with k = 7 passes through all eight points without error, but at the

cost of extreme fluctuations.

Figure 23: Observed values and model predictions
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In our example, we can detect the presence of overfitting by a single glance at the image

23, but for more complex models this task becomes practically unsolvable. A popular and

essentially the only effective solution to the overfitting problem is the cross-validation.

Cross-validation is based on the idea that it is not advisable to validate the quality of a

model on the same data which we had used to estimate its parameters. Therefore, before

any computation, we split the data set into two subsets: training and test. We will use

only the observations from the training set to estimate the parameters, but to validate

the quality of the fit to the data we will only use the elements of the test set.

The test set is usually less numerous than the training set. In our case, we do not

split the eight observations into two groups but add another 42 classmates of Agatha and

Otto’s to the set. In Figure 23 they are represented by gray circles. We can see that the

more our model can fit the training set, the further it moves away from the test set. In

Figure 22, the orange curve shows the progress of R2 computed on the test set. At first

results are very pleasing (even slightly better than on the training set, coincidentally).

However, from k = 4 onwards it drops rapidly and for k = 6 and 7 it can hardly explain

any variance at all.

Performing cross-validation significantly increases the trustworthiness of our results.

While this procedure is not very popular in psychology, in many other fields (especially

machine learning17) cross-validation is a necessary step, and by omitting it, the author

disqualifies their results from any discussion18.

If necessary, we can be satisfied with cross-validation as described in this textbook.

However, more sophisticated cross-validation methods can be found in literature. For

example, a popular method called K-fold cross-validation divides sample into K equally

sized subsets. Gradually, all K subsets take turns in the role of the test set, while the

remaining observations always play the role of the training set. The obtained K model

accuracy estimates are then averaged.

17 Machine learning is focused on creating highly complex models to find the right solution (prediction)
in the context of challenging problems. A popular class of such models are artificial neural networks
which typically contain hundreds to thousands of parameters – therefore, overfitting is a central issue in
this area.

18 The reason for the little use of cross-validation in psychology is that we usually create models to test
the statistical significance of selected regressors, not for prediction purposes. If the statistical model is
overfitted, the estimates of the standard deviations of the individual parameters increase dramatically,
and there is little chance that any significant relationship will be found. The potential risk of false
positives therefore decreases.
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13 Long and wide formats, and mixed-effects models

Basic statistics courses have taught us that the usual way of formatting a data table is

to assign rows to individual probands and to record the observed statistical features in

the columns. This format is often referred to as wide. However, this is not the only

way to represent data. We can grasp a number of problems much more elegantly by

converting the data into a format called long. Let us demonstrate the difference between

these formats and their usefulness in the following example.

In the context of psychophysiological research, we ask what role neuroticism plays in

a stressful situation. We hypothesize that individuals scoring high on the neuroticism

scale show greater stress when faced with a frustrating task compared to less neurotic

individuals. We operationalize the level of stress as the heart rate measured by ECG.

We monitor each participant’s heart rate with an ECG and administer three stressful

tasks: the Stroop test, the arithmetic task (loudly reciting numbers in a descending

sequence of 300, 293, 286, 279...) and the verbal fluency test (listing as many words

as possible beginning with a given letter within a time limit). Between each of these

tasks there is a relaxation phase where the participant is presented with calming stimuli.

The relaxation phase is also scheduled at the beginning and the end of the experiment, so

each participant goes through seven experimental conditions. The questionnaire assessing

neuroticism is administered to each participant before testing begins. Sixty-two volunteers

participated in the study. Table 11 shows several observations in wide format.

Table 11: Data table in wide format

Heart rate [bpm]

Proband Neurot.
Relax.

1
Stroop
test

Relax.
2

Aritmet.
task

Relax.
3

Verbal
fluency

Relax.
4

1 10 61 106 75 98 75 92 69
2 2 72 84 79 85 71 75 73
3 12 116 160 149 161 138 148 131
4 14 70 90 67 94 68 97 67
5 16 91 107 83 115 78 118 77
6 17 66 90 65 82 61 88 60
7 21 82 112 104 118 97 120 92
8 4 60 78 65 86 64 79 61
9 23 66 81 58 77 61 78 62
...

...
...

...
...

...
...

...
...

If we are looking for an answer to the question how neuroticism affects heart rate

under various circumstances, we encounter difficulties in developing a statistical model.

What we have here is de facto 7 dependent variables and a single regressor (neuroticism).
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We would probably have to help ourselves by some averaging – perhaps by calculating

the average heart rate for each proband during frustrating tasks and the average heart

rate during relaxation. We subtract these two variables from each other and look for a

correlation coefficient between this difference and neuroticism. However, this procedure

falls far short of using all the information we have and therefore achieves only limited

statistical power.

A more appropriate way might be to convert the data table to the long format. In

this format, individual rows will represent individual heart rate observations. Thus, each

proband will be represented in Table by seven rows corresponding to the seven experi-

mental conditions. The data in long format is shown in the table 12. Such a table has

7 · 62 = 434 rows.

Table 12: Data table in long format

Proband Neuroticism Stage Heart rate

1 10 Relaxation 1 61
1 10 Stroop test 106
1 10 Relaxation 2 75
1 10 Arithmetic task 98
1 10 Relaxation 3 75
1 10 Verbal fluency test 92
1 10 Relaxation 4 69

2 2 Relaxation 1 72
2 2 Stroop test 84
2 2 Relaxation 2 79
2 2 Arithmetic task 85
2 2 Relaxation 3 71
2 2 Verbal fluency test 75
2 2 Relaxation 4 73

3 12 Relaxation 1 116
3 12 Stroop test 160
...

...
...

...

A linear model that could describe the situation is now more obvious. The dependent

variable is the heart rate column, and we use neuroticism, phases and their interaction as
regressors.

If you suspect that we must have made some kind of mistake, since we just reformatted

our data to increase the sample size from 62 to 434 rows, you are not wrong. A condition

of any statistical test is the independence of individual observations. That is, the values

in the first row must not be related in any way to the values in the second, third, and

subsequent rows. In this case, however, we are severely violating this condition – each

90



seven rows represent one person, and one would expect that if you had a high heart rate

six times, you would have a high heart rate the seventh time as well, so there can be no

question of any independence.

To remove the dependency, we need to add a categorical variable proband (62 lev-

els in total) to the model. By doing so, we argue that all rows within each group of

seven are slightly shifted towards higher numbers and or towards lower numbers. We can

compensate for these displacements by using a new regressor.

Unfortunately, solving the independence problem creates another problem: the neu-

roticism variable and the proband variable are perfectly linearly dependent (i.e., complete

multicollinearity is present). Under these circumstances, the least squares method pro-

vides no solution. Fortunately, we know a remedy for this problem as well, which is the

mixed-effects model.

The mixed effects model contains two types of regressors: fixed and random. The

former corresponds to what we learned about regressors earlier. However, the latter,

random factors differ in many ways. A random factor is always nominal. When we say

a factor is random, we assume that there is a large population of levels of that

factor and that the magnitudes of the regression weights of those levels have

a normal distribution in that population. However, we have only a few randomly

drawn levels. In our case, we could consider the proband variable as a random regressor.

There is a large population of people, but we have “drawn” only n of them. Moreover, we

can expect that the heart rate diversity is normally distributed among different people.

A crucial advantage of random factors is that they are not subject to the

no-collinearity condition. We can estimate the weights of random factors even when

they are fully linearly dependent on any set of fixed or random factors.

When estimating a mixed-effects model, we work with two types of error variances:

we estimate the residual variance already familiar to us, but we also estimate the variance

of the random-effect level weights. Thus, in our case, we are not only trying to minimize

the inaccuracy of the prediction (σ2
ϵ ), but also to estimate the variance of the heart rates

(σ2
proband) of the individual probands as low as possible.

When interpreting the results, we do not usually look at the random effect level

weights, but only consider the fixed effect weights. Nevertheless, it is worth to pay

attention to the estimation of the σproband parameter, as it helps us get an idea of how

fixed effects sizes compare to random effects. In our case, we estimated the interindividual

heart rate diversity to be approximately 7.5 beats per minute. The results suggest that

the differences in heart rate between individuals scoring at opposite ends of the neuroti-

cism spectrum are between 10 and 20 points. Thus, we can conclude that the observed

effects achieve practical significance in addition to statistical significance.
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Figure 24: Heart rate during each condition in probands with low and high levels of
neuroticism

Mixed-effects models can be applied in more cases than our example suggests. In

addition to designs with repeated measurements, the described procedure finds application

in designs focused on hierarchically arranged nested categories. Typically, this would be

the case, for example, when we observe students at several different schools and work with

several classes within each of these schools. In such a case, the school and class regressors

are perfectly dependent and thus not testable using the least squares method. These

designs are often referred to as hierarchical models (not to be confused with hierarchical

regression) and nested models.

Another appreciated feature of mixed-effects models is that they efficiently handle

missing data. For example, if there were corrupted records in our heart rate example

that needed to be discarded, we can use the method without modification. Whether each

proband was measured seven times, or whether this number varies, does not bias the

results.
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List of symbols

X Independent variable (regressor).
Y Dependent variable.

Ŷ Predicted value of dependent variable.

ϵ Residual. Difference between prediction Ŷ and the observed value Y .

β Unstandardized regression coefficient.
β∗ Standardized regression coefficient.
β0 Intercept (average value of Y if all regressors are equal to 0).
β1 The slope parameter of the regression line in a simple regression.

n Number of observations (usually sample size).
h Number of omitted regressors by which the model differs from its submodel.
k Number of regressors.
p Number of estimated parameters (usually k + 1). Or p-value for decimal

numbers.

RSS Residual sum of squares.
R2 Coefficient of determination (percentage of explained variance of the depen-

dent variable).
∆R2 Change in R2 after adding or excluding regressors from the model.
R2

adj. Adjusted coefficient of determination.

S2
ϵ Estimation of residual variance. Can also be written as σ̂2

ϵ .
σ2
ϵ True value of the residual variance.

SSY The sum of the squares of the differences Y from the mean.

F The F statistic, or its estimate, for the submodel test.
t Wald statistic for regressor significance test.
H0 Null hypothesis.
α Significance level.
df Degrees of freedom.

Dj Cook’s distance.
H Projection (hat) matrix.
hj Leverage. The j-th diagonal element of the matrix H.
VIF Variance inflation factor. An indicator of the multicollinearity. Its inverse

is called tolerance.

x Vector of specified values of X variables for prediction calculation.
X Design matrix. It corresponds to the matrix of allX variables, supplemented

by the first column with number 1 in each row.

V̂AR(β̂) Variance estimate of the regression weights variance matrix.
I1−α In general, the confidence interval (it can be for one parameter, for a regres-

sion line and around the regression line).
P1−α Prediction interval.
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